Abstract:
A live video is directed to a display buffer of the device. The device is preferably a set top box and a live video frame stored in the display buffer is preferably displayed by a display device coupled to the set top box. The display device is preferably a television. A capture command preferably signals the set top box to store one or more frames of the currently displayed live video. Upon receiving the capture command, the live video is paused, thereby preventing the display buffer from loading subsequent live video frames. The live video is then re-directed to a capture buffer, the live video is un-paused, and a current live video frame is captured from the capture buffer. The captured frame is then stored using a conventional storage medium. After the frame is captured, the live video is re-directed from the capture buffer to the display buffer to resume display of the live video.
Abstract:
A video encoder having multiple channels each capable of producing an independently controlled encoded output. In one embodiment, the video encoder has circuitry common to all of the channels and separate circuitry for each channel. The common circuitry can include a motion compensator, a transformer, and a local decoder. One or more of the separate circuitry can include a quantizer, a scanner, an encoder, and a buffer. Each channel includes quantization feedback, and one channel output is fed back to the local decoder for use in generating reference pictures. The channels are separately controllable for the characteristics of at least one of quantization, scanning, and encoding.
Abstract:
Embodiments of the present invention provide a method and apparatus for maintaining smooth video transition between distinct applications. Preferably, the apparatus implementing the present invention includes a processor, a secondary memory and a system memory. In providing a smooth transition between two applications, the apparatus and method provides synchronization of the video and graphics components while transitioning from a first application to a second application. If there is no video component in either application, no action is needed to provide a smooth transition between applications, and when only the first application includes a video component, the video component need only be turned off for smooth transition between the applications to occur. When both the first application and the second application include video components, smooth transition between the applications according to the present invention is dependent upon the display window size of the first application in comparison to the second application. The apparatus and method of the present invention triggers a process according to the size of the display windows of the first and second applications.
Abstract:
Flat panel displays, such as field emission displays (FEDs) and plasma displays are provided having reduced through-vacuum interconnects by incorporating driver circuitry on the same substrate as the active display region of the display device. In one implementation, vacuum-sealed image display device comprises a substrate; an active display region on the substrate and including addressable rows and columns defining pixels; and driver ICs on the substrate, outputs of each driver IC coupled to the rows and columns, the drivers ICs adapted to drive the active display region to display an image. The device also comprises a vacuum envelope forming a sealed volume containing at least a portion of the substrate, the active display region and the driver ICs, the sealed volume maintained in a vacuum, the vacuum envelope defining a vacuum border. As the resolution of flat panel displays increases, reducing interconnects becomes increasingly important.
Abstract:
A system providing a user interface to annotate different items in a media production system such as in a digital non-linear post production system. Parts of the production, such as clips, frames and layers, that have an associated annotation are provided with a visual annotation marker. The annotation marker can use shape, color or animation to convey source, urgency, status or other information. Annotations can be text, freehand drawing, audio, or other. Annotations can be automatically generated. Annotations can be compiled into records, searched and transferred. A state of an application program can be stored and transferred to a remote system. The remote system attempts to recreate the original state of the application program. If the remote system is unable to do so, an image of the state of the application program is obtained, instead. Assignment of control to various functions of an application program is achieved by associating a function (i.e., modifying a parameter) with a user control at a remote location.
Abstract:
To reduce peak bandwidth requirements for a channel carrying several multiplexed MPEG-type programs, the generation of large intraframes is coordinated among the programs to avoid two program encoders simultaneously encoding an intraframe.
Abstract:
A stand-by power supply circuit is provided that controls power consumption and decreases electromagnetic interference during operation of a television. In one embodiment, the stand-by power supply circuit is connected to a switch that is connected to an AC line. The switch is located a prearranged distance from a main power supply circuit and provides a method for reducing the electromagnetic interference caused by the stand-by power supply circuit in an operating television by disconnecting the AC line from the stand-by power supply circuit and connecting the AC line to the main power supply circuit via the switch during a power-on mode/operation. In another embodiment, the switch includes a stand-by power supply circuit switch and a main power supply circuit switch which provide proper timing for the connection of the AC line to the main power supply circuit and the disconnection of the AC line from the stand-by power supply circuit to guarantee uninterrupted and cost-effective power consumption during the power-on operation.
Abstract:
A wireless intelligent switch engine (WISE) is described. The wireless intelligent switch engine provides for automatic switching between different physical wireless interfaces in mobile devices while roaming to maintain a wireless network connection. WISE functions as a bridge between a mobile device and multiple wireless network interfaces to provide automatic and seamless switching among networks while roaming. The mobile device sees WISE as a LAN interface and communicates with WISE using the TCP/IP protocol stack, thus providing a PPP-less configuration that uses the TCP/IP protocol stack regardless of the wireless interface.
Abstract:
Field emission displays (FEDs) having improved structure are provided. In one implementation, a field emission display comprises a faceplate, a backplate, a volume formed therebetween and maintained as a vacuum, a cathode and an anode. A thickness of the faceplate and the backplate are sufficient to prevent deformation of the faceplate and the backplate across their dimensions due to the vacuum such that spacers are not needed to maintain a uniform separation between the anode and the cathode. In an alternative implementation, the volume includes a first portion between the cathode and the anode and a second portion between the cathode and the backplate, the second portion continuous with the first portion. The second portion provides an improved volume to surface area ratio, which improves vacuum quality and which allows for improved gettering, which again allows for improved vacuum quality and longer display lifetime.
Abstract:
A method of improving performance within video decoders subject to the execution of overlapped motion compensation. The method utilizes a triple-buffering approach to achieve rapid data transfers and to eliminate transfer and decoding delays. Each of the three buffers is sequentially utilized for (i) receipt of decoded macroblock data, (ii) insertion of additional decoded macroblock data from a subsequent decoding stage, and finally (iii) the transfer of the collected macroblock data to a transfer buffer. The method is applicable to a number of multiprocessing decoders, and is especially well suited for MPEG-4 and H.263 multiprocessing decoders.