Abstract:
A peak to average power ratio signal is generated from a first mapping function that selects the peak to average power ratio signal that corresponds to the data rate or data format of the signal to be transmitted. The selected peak to average power ratio signal is summed with a desired average transmit power signal. The resulting summation signal is input to a second effectively continuously valued mapping function comprising a table that has a plurality of power amplifier control signal values each with a corresponding peak transmit power. Each peak transmit power signal value results in a power amplifier control signal value that achieves the best possible transmitter power efficiency while still meeting out of band spurious emissions and waveform quality requirements. The summation signal value maps to one of the power amplifier control signal value that is then used to adjust a parameter such as bias of the power amplifier.
Abstract:
A test apparatus for conducting a radiated performance test on a wireless device under controlled test conditions, the test apparatus having an anechoic chamber; a test computer; and an interface, the interface adapted to connect the test computer to the wireless device, the test apparatus being adapted to: establish a data connection on the interface between the test computer and the wireless device; initialize and start a timer for a predetermined interval on the wireless device; subject the wireless device to the radiated performance test in the anechoic chamber after the predetermined interval; and analyze test results on the test computer from a test log stored on the wireless device during the radiated performance test, wherein the interface between the test computer and the wireless device is adapted to be removed during the predetermined interval; for conducting a radiated performance test on a wireless device
Abstract:
In instant communications over a wire-less network, a user from a private organization sends the request for instant communications communication through a private server controlled by the private organization. The private server sets up a private account with the wireless carrier and the user communicates via the private account.
Abstract:
The present invention provides a method of printing which includes providing a substrate having an inked surface. The inked surface is typically achieved using an offset lithographic printing press. A thermoplastic polymer powder is applied to the inked surface. The surface is then fused. An advantage of the prepared substrate is that there is reduced contamination of electrostatographic fusing systems when fused by heat and pressure fixing. Another aspect of the invention further provides a method of fusing a substrate having an inked surface wherein a thermoplastic powder has been applied to the inked surface prior to stacking the uncured offset prints.
Abstract:
The present invention is a coating for a fuser roller having an elastomer layer that includes fluoroplasfic particles dispersed through the elastomer layer wherein the surface of the particles has been contacted with a solution comprising a group I or a group II metal hydride while being exposed to ultraviolet UV radiation. This treatment reduces the fluorine content in of the layer by at least 20 percent and increases the oxygen content or nitrogen content on the layer to greater than zero.
Abstract:
The present invention provides a porous toner. The porous toner has a porosity of greater that 20 percent. The toner can include vinyl polymers, copolymers of styrene monomers and polyesters. In addition a method of manufacture of the toner particles is provided.
Abstract:
In one illustrative example of the present application, a mobile communication device has one or more processors, a wireless transceiver adapted to provide communications through a wireless communication network, and a buffer memory for use in buffering a Push-To-Talk (PTT) communication from the mobile communication device. The one or more processors are operative to produce a mobile device indication message which indicates the mobile device's support for buffering of the PTT communication. This message is transmitted by the wireless transceiver to a PTT service entity through the wireless network. The one or more processors may be further operative to receive, from the PTT service entity through the wireless network, a network indication message which instructs the mobile device whether to use buffering for the PTT communication. The mobile device may use the buffer memory for the buffering of the PTT communication based on the network indication message from the PTT service entity.
Abstract:
Copolymerization of Ni(H) or Co(II) acenaphthene diimine complexes containing olefinic substituents on aryl groups in the presence of a free radical initiator results in polymerized late transition metal catalysts which can be used for olefin polymerization or oligomerization. These catalysts have high catalyst activity for olefin polymerization or oligomerization.
Abstract:
A received signal is sampled at a sampling period of T+m*(T/n) during a sampling phase determination process. T is a symbol or chip period of the received signal, n is a number of phases of the sampled signal, T/n is a phase resolution period, and m is a fixed non-zero integer value where −n
Abstract translation:在采样相位确定处理期间以T + m *(T / n)的采样周期采样接收信号。 T是接收信号的符号或码片周期,n是采样信号的相位数,T / n是相位解析周期,m是固定的非零整数值,其中-n
Abstract:
The settling time of a wireless receiver is reduced by providing a previously utilized gain control state value to a low noise amplifier (LNA) of a receiver front end during a warm-up portion of a wake-up period of the wireless receiver which follows a sleep period. One illustrative method includes the steps of receiving a notification signal which indicates that the wireless receiver is to be placed in a sleep mode, reading a gain control state value from a gain controller based on receiving the notification signal, storing the gain control state value in memory, providing the stored gain control state value from the memory to the wireless receiver during a warm-up period of a second wake-up period following the first wake-up period, and providing a gain control state value from the gain controller to the wireless receiver based on a signal level of a currently received signal of the wireless receiver after the warm-up period.