Abstract:
Feedback data useful in prosthodontic procedures associated with the intra oral cavity is provided. First, a 3D numerical model of the target zone in the intra oral cavity is provided, and this is manipulated so as to extract particular data that may be useful in a particular procedure, for example data relating to the finish line or to the shape and size of a preparation. The relationship between this data and the procedure is then determined, for example the clearance between the preparation and the intended crown. Feedback data, indicative of this relationship, is then generated, for example whether the preparation geometry is adequate for the particular type of prosthesis.
Abstract:
A wax model of a required coping is produced using CNC machining techniques based on a virtual model of the coping created from digital data obtained from the intraoral cavity. The dental coping is then fabricated from the wax model.
Abstract:
A dental prosthesis is made by externally machining successive layers of wax, each of which is formed on a previous prosthesis layer and/or on a coping. Each wax layer is used to form a mold in situ over the previous prosthesis layer/coping, and the appropriate prosthesis material is cast or otherwise molded to conform to the wax layer by the mold.
Abstract:
The invention provides a method for creating a physical teeth model. The method comprises the following steps: providing a virtual three dimensional (3D) representation of a patient's dentition that comprises at least a region of the teeth that includes a tooth stump on which a crown is to be fitted or a region on to which a bridge is to be fitted; and preparing a physical model of the jaws of a subject from a blank, based on information from said virtual 3D image.
Abstract:
A dental instrument and method for imaging the three-dimensional topography of one or more teeth in the oral cavity of an individual is provided. The instrument includes a probe insertable into the oral cavity to receive the image of these surfaces which can then be processed. Combined with the probe is an auxiliary which projects an air stream toward the surface to be imaged by the probe and acts to evaporate and remove from these surfaces a liquid film coating formed by saliva and other fluids present in the oral cavity, to render these surfaces dry and to enhance their reflectivity and in doing so, provide clearer images.
Abstract:
The invention provides a method for creating a physical teeth model. The method comprises the following steps: providing a virtual three dimensional (3D) representation of a patient's dentition that comprises at least a region of the teeth that includes a tooth stump on which a crown is to be fitted or a region on to which a bridge is to be fitted; and preparing a physical model of the jaws of a subject from a blank, based on information from said virtual 3D image.
Abstract:
A dental instrument and method for imaging the three-dimensional topography of one or more teeth in the oral cavity of an individual is provided. The instrument includes a probe insertable into the oral cavity to receive the image of these surfaces which can then be processed. Combined with the probe is an auxiliary which projects an air stream toward the surface to be imaged by the probe and acts to evaporate and remove from these surfaces a liquid film coating formed by saliva and other fluids present in the oral cavity, to render these surfaces dry and to enhance their reflectivity and in doing so, provide clearer images.
Abstract:
Feedback data useful in prosthodontic procedures associated with the intra oral cavity is provided. First, a 3D numerical model of the target zone in the intra oral cavity is provided, and this is manipulated so as to extract particular data that may be useful in a particular procedure, for example data relating to the finish line or to the shape and size of a preparation. The relationship between this data and the procedure is then determined, for example the clearance between the preparation and the intended crown. Feedback data, indicative of this relationship, is then generated, for example whether the preparation geometry is adequate for the particular type of prosthesis.
Abstract:
A method for virtual orthodontic treatment is provided in which a virtual set of orthodontic components is associated, in a virtual space, with a first virtual three-dimensional image of teeth, and then by a set of rules which define the effect of the set of components' teeth, the effect of the virtual treatment can be computed. This virtual treatment can be used to predict the results of a real-life orthodontic treatment as to design such a treatment.
Abstract:
A wax model of a required coping is produced using CNC machining techniques based on a virtual model of the coping created from digital data obtained from the intraoral cavity. The dental coping is then fabricated from the wax model.