Abstract:
The present invention provides a method for generating random jitter test patterns by generating a sequence of maximum-size asynchronous packets according to the P1394b standard and transmitting the sequence to the device under test. The present invention provides a method for generating jitter test patterns by disabling the transmitter data scrambler of the second device; clearing the port_error register of the device under test; and sending a test pattern to said device under test. The present invention provides for a method for generating supply noise test patterns comprising: transmitting a test pattern to the DUT comprising a maximum length asynchronous packet containing alternate 0016 and FF16 bytes.
Abstract:
Methods and apparatus for calibration of interface operation of a display device. In one exemplary embodiment of the invention, an embedded DisplayPort (eDP) source element (such as a graphics processing unit (GPU)) configures itself to support the minimum requirements necessary to support a sink element (such as a screen display). Unlike prior art solutions, minimum sink requirements are identified during a calibration process, and the source is configured accordingly. By tailoring the source to the specific requirements of the sink, the device can initialize faster, consume less power, etc. Moreover, in another aspect of the present invention, if a device does not initialize to an expected configuration based on prior calibration settings, the device can be flagged as having faulty or failing components.
Abstract:
Methods and apparatus for the intelligent association of control symbols with special symbols that are transmitted over a network. In one embodiment, the association is utilized to improve DC-balance on a transmission medium. In an exemplary variant, the special symbols originate from line codes such as the 8B/10B line code, which format a digital signal so that is optimized for transmission over a given physical channel. These control symbols are divided up according to a first criterion, while the special symbols are further divided up according to a second criterion. The divided control symbols are then allocated to the divided special symbols using a pre-designated allocation algorithm, which may or may not include a scrambling algorithm. The allocation of the control symbols improves signal characteristics and electromagnetic interference (EMI) when various ones of control symbols are ultimately transmitted over a given transmission medium.
Abstract:
Methods and apparatus for scrambling symbols over multi-lane serial interfaces in order to improve undesired electromagnetic emissions. In one embodiment the scrambling is based on a seed value associated with each lane. In a second embodiment, the scrambling values are selected from various taps of a scrambling component, where the selection is based on the associated lane. In still a third embodiment, each lane is associated with a distinct scrambling component.
Abstract:
Methods and apparatus for estimating received error rates. In one embodiment, the estimation of received error rates is conducted in relation to a bus interface such as a high-speed High-Definition Multimedia Interface (HDMI) interface, and the method utilizes corrupted symbols that violate TMDS symbol rules, the corrupted symbols being easily detected and counted. In one exemplary implementation, a symbol error rate (SER) can be estimated from the number of detected invalid symbols. The SER can be used to diagnose the performance of the HDMI interface, and optionally as a basis for selecting or implementing corrective action(s).
Abstract:
Methods and apparatus for the scrambling of control symbols. In one embodiment, the control symbols are associated with an HDMI interface, and the methods and apparatus are configured to scramble the symbols to as to mitigate the effects of electromagnetic interference (EMI) created by the transmission of otherwise unscrambled sequences of symbols which may contain significant “clock pattern” or other undesirable artifact.
Abstract:
Methods and apparatus for the safe negotiation of high current for a High-Definition Multimedia Interface (HDMI) active cable assembly. In one embodiment, a method for detecting a Power for Cable Assembly (PCA)-capable source is disclosed, the method including: detecting, by a cable assembly, an assertion of a defined voltage on a power supply pin; forwarding an assertion of a hot plug detect signal pin, by the cable assembly, from a sink device towards the PCA-capable source; detecting, by the cable assembly, a reduction in the defined voltage on the power supply pin for a defined period of time in response to the forwarding; and detecting, by the cable assembly, a re-assertion of the defined voltage on the power supply pin subsequent to the lapse of the defined period of time. PCA dependent cable assemblies and PCA capable source devices are also disclosed.
Abstract:
Methods and apparatus for the safe negotiation of high current for a High-Definition Multimedia Interface (HDMI) active cable assembly. In one embodiment, a method for detecting a Power for Cable Assembly (PCA)-capable source is disclosed, the method including: detecting, by a cable assembly, an assertion of a defined voltage on a power supply pin; forwarding an assertion of a hot plug detect signal pin, by the cable assembly, from a sink device towards the PCA-capable source; detecting, by the cable assembly, a reduction in the defined voltage on the power supply pin for a defined period of time in response to the forwarding; and detecting, by the cable assembly, a re-assertion of the defined voltage on the power supply pin subsequent to the lapse of the defined period of time. PCA dependent cable assemblies and PCA capable source devices are also disclosed.
Abstract:
Methods, structures, and apparatus that limit the amount of dendritic growth and metal migration between contacts in order to prevent an erroneous detection of a connection and/or functional failure. One example may reduce dendritic growth and metal migration by limiting an amount of time that a connection detection voltage is applied to CC contacts of a USB Type-C connector when an electronic device is detecting a connection. This and other examples may further limit dendritic growth by not applying the connection detection voltage to the CC contacts for a first duration following a detection of a disconnection.
Abstract:
Methods and apparatus for the selection and/or configuration of scrambling operations to accommodate e.g., both scrambling and non-scrambling connections (such as to e.g., legacy type devices). In one embodiment, media interface devices (such as e.g., HDMI (High-Definition Multimedia Interface)) devices may provide enhanced scrambling capabilities; solutions disclosed herein provide, among other things, support for both enhanced scrambling capable devices and legacy devices, and enable a device to determine the scrambling capabilities of a connected device.