Abstract:
In one aspect, an electron emission device comprises a substrate, and a first layer supported by the substrate. The first layer comprises a conductive material. The electron emission display device further comprises an electron emission tip electrically connected with the first layer, and a second layer electrically disposed between the first layer and the electron emission tip. The second layer comprises microcrystalline silicon. In another aspect, the invention encompasses a method of forming an electron emission device. A substrate is provided, and a conductive layer is formed over the substrate. A microcrystalline-silicon-containing layer is formed over the conductive layer, and a resistor layer is formed over the microcrystalline-silicon-containing layer. An emitter tip is formed over the resistor layer. In yet other aspects, the invention encompasses field emission display devices, and methods of forming field emission display devices.
Abstract:
The disclosed multilayer conductor may be used in place of aluminum conductive lines in integrated circuits and field emission displays. The multilayer conductor includes a primary conductive line, preferably made from aluminum, and a protective line, preferably made from chromium. The protective line separates the aluminum from adjacent silicon-based layers.
Abstract:
A field emission array includes a plurality of pixels. Each pixel includes at least one resistor, at least one emitter tip overlying each resistor, and at least one substantially vertically oriented conductive line positioned laterally adjacent each resistor. The pixels may be arranged in substantially parallel lines. Adjacent pixels are separated and electrically isolated from one another by recessed areas located therebetween. Each conductive line is located within a recessed area. The conductive lines of a field emission array that includes lines of pixels may contact the resistors of each pixel of the corresponding line of pixels. Base portions of at least some of the emitter tips of the field emission array may overlie a portion of the conductive line that corresponds to the pixel of which such emitter tips are a part. Field emission displays that include such field emission arrays are also disclosed.
Abstract:
A method for fabricating row lines over a field emission array in which two mask steps are used to define row lines and pixel openings through selected regions of each row line. A first mask may be employed in the removal of dielectric material and conductive material from between pixel rows and from substantially above each pixel of the field emission array. A second mask may be used in the removal of semiconductor material from between the adjacent rows of pixels. Alternatively, a first mask may be employed in the definition of row lines, while a second mask may be used in the formation of pixel openings. Field emission arrays having a semiconductive grid and a relatively thin passivation layer exposed between adjacent row lines are also disclosed.
Abstract:
A method for fabricating row lines over a field emission array employs only two mask steps to define row lines and pixel openings. A layer of conductive material is disposed over a substantially planarized surface of a grid of semiconductive material and a layer of passivation material is disposed over the layer of conductive material. Row lines and pixel openings may be formed through the passivation and conductive layers by use of a first mask. The row lines may be further defined by using a second mask to remove semiconductive material of the grid. Alternatively, a first mask may be used to fully define row lines from the layers of passivation, conductive, and semiconductive material, while a second mask may be used to define pixel openings through the layers of passivation and conductive material. Field emission arrays fabricated by such methods are also disclosed.
Abstract:
A method of fabricating a field emission array to facilitate optimization of the size of grid openings. The method also minimizes the occurrence of electrical shorts between the cathode and anode grid of the field emission array. In the method of the present invention, a first layer of dielectric material is disposed over a substrate and emitter tips of the field emission array. A second layer is disposed over the first layer and subsequently planarized to expose regions of the first layer that are located above the emitter tips. Dielectric material of the first layer may be removed through openings of the second layer to expose a top portion of each of the emitter tips. The second layer is then substantially removed from the first layer. Planarization and removal of the second layer may reduce any conductive defects that extend through the first layer. A third layer, which comprises dielectric material, is disposed over the first layer. A fourth layer of grid material is disposed over the third layer, then planarized to expose dielectric material located over the emitter tips. The dielectric material exposed through the fourth layer is removed to define grid openings or apertures through the fourth layer. Dielectric material may also be removed through the grid openings to space the first and third layers apart from the emitter tips. Field emission arrays fabricated in accordance with the method of the present invention are also within the scope of the present invention.
Abstract:
A method of fabricating a field emission array that employs a single mask to define the emitter tips thereof and their corresponding resistors. A layer of conductive material is disposed over a substrate of the field emission array. A plurality of substantially mutually parallel conductive lines is defined from the layer of conductive material. At least one layer of semiconductive material or conductive material is disposed over the conductive lines and over the regions of the substrate exposed between adjacent conductive lines. A mask material is disposed over the layer of semiconductive material or conductive material, substantially above each of the conductive lines. Portions of the layer of semiconductive material or conductive material exposed through the mask material may be removed to expose substantially longitudinal center portions of the conductive lines. Other portions of the layer of semiconductive material or conductive material may remain over peripheral lateral edges of the conductive lines. The mask material may be removed and the layer of semiconductive material or conductive material planarized. A mask is disposed over the field emission array and portions of the layer of semiconductive material or conductive material removed therethrough to define emitter tips and their corresponding resistors. The substantially longitudinal center portion of each of the conductive lines may be removed to electrically isolate adjacent columns of pixels of the field emission array from each other. Field emission arrays fabricated by the method of the present invention are also within the scope of the present invention.
Abstract:
A method of fabricating row lines over a field emission array. The method employs only two mask steps to define row lines and pixel openings through selected regions of each of the row lines. In accordance with the method of the present invention, a layer of conductive material is disposed over a substantially planarized surface of a grid of semiconductive material. A layer of passivation material is then disposed over the layer of conductive material. In one embodiment of the method, a first mask may be employed to remove passivation material and conductive material from between adjacent rows of pixels and from substantially above each of the pixels of the field emission array. A second mask is employed to remove semiconductive material from between the adjacent rows of pixels. In another embodiment of the method, a first mask is employed to facilitate removal of passivation material, conductive material, and semiconductive material from between adjacent rows of pixels of the field emission array. A second mask is employed to facilitate the removal of passivation material and conductive material from the desired areas of pixel openings. The present invention also includes field emission arrays having a semiconductive grid and a relatively thin passivation layer exposed between adjacent row lines.
Abstract:
In one aspect, the invention encompasses a method of treating the end portions of an array of substantially upright silicon-comprising structures. A substrate having a plurality of substantially upright silicon-comprising structures extending thereover is provided. The substantially upright silicon-comprising structures have base portions, and have end portions above the base portions. A masking layer is formed over the substrate to cover the base portions of the substantially upright silicon-comprising structures while leaving the end portions exposed. The end portions are then exposed to conditions which alter the end portions relative to the base portions. In another aspect, the invention encompasses a method of treating the ends of an array of silicon-comprising emitter structures. A substrate having a plurality of silicon-comprising emitter structures thereover is provided. The emitter structures have base portions and ends above the base portions. A layer of spin-on-glass is formed over the substrate. The layer of spin-on-glass covers the base portions of the emitter structures and leaves the ends exposed. The ends are then exposed to conditions which alter the ends relative to the base portions. In yet another aspect, the invention encompasses a cathode assembly which includes a plurality of silicon-comprising emitter structures projecting over a substrate. The emitter structures have base portions and ends above the base portions, and the ends comprise a different material than the base portions.
Abstract:
A method of fabricating row lines over a field emission array. The method employs only two mask steps to define row lines and pixel openings through selected regions of each of the row lines. In accordance with the method of the present invention, a layer of conductive material is disposed over a substantially planarized surface of a grid of semiconductive material. A layer of passivation material is then disposed over the layer of conductive material. In one embodiment of the method, a first mask may be employed to remove passivation material and conductive material from between adjacent rows of pixels and from substantially above each of the pixels of the field emission array. A second mask is employed to remove semiconductive material from between the adjacent rows of pixels. In another embodiment of the method, a first mask is employed to facilitate removal of passivation material, conductive material, and semiconductive material from between adjacent rows of pixels of the field emission array. A second mask is employed to facilitate the removal of passivation material and conductive material from the desired areas of pixel openings. The present invention also includes field emission arrays having a semiconductive grid and a relatively thin passivation layer exposed between adjacent row lines.