Abstract:
Communications of a mobile station with a satellite mobile communications system and a terrestrial mobile communications system are coordinated. The mobile station is registered with the terrestrial mobile communications system and, responsive to the registration of the mobile station with the terrestrial mobile communications system, the mobile station is concurrently registered with the satellite mobile communications system. The concurrent registration may include implicitly registering the mobile station with the satellite mobile communications system, e.g., by storing information identifying the mobile station may be stored in a location register of the satellite mobile communications system responsive to the registration of the mobile station with the terrestrial mobile communications system, and maintaining synchronization between the two registrations. Authentication tokens may be pre-generated for quick re-registration with a satellite mobile communications system.
Abstract:
In some embodiments, a satellite communications network dynamically regulates carrier assignment for bidirectional communications between a satellite and radioterminals. The satellite communications network includes a resource manager that regulates the carrier assignments by selecting among a plurality of FDD return subcarriers, with potentially different subcarrier bandwidths and supporting different radio access technologies, within at least one FDD return carrier grouping for coupling to a selected one of a plurality of FDD forward carriers, and by controlling the satellite network to receive communications from the radioterminal on the selected FDD return subcarrier and to transmit communications to the radioterminal on the selected FDD forward carrier.
Abstract:
A processor for use in a satellite communications system includes a selector that is configured to select a subset of a plurality of spatially diverse satellite signals based upon a location of a radioterminal. The processor further includes a signal processor that is configured to detect a return-link transmission from the radioterminal responsive to the selected subset of the spatially diverse satellite signals. The respective spatially diverse satellite signals may include respective signals corresponding to respective antenna elements of a satellite. The selector and the signal processor may be ground based.
Abstract:
An approach to managing stored-value data objects, such as electronic tickets, comprises secure systems and procedures for ticket issuing, storage, and redemption. With these systems and procedures in place, stored-value data objects may be securely transferred to remote systems, such as a user's personal electronic device, for subsequent secure redemption, thus allowing the user to gain access to the desired goods or service upon redeeming the data object. Techniques provide secure delivery of the requested data object to the requesting device, and provide secure redemption and disposal of the data object. Ticket issuing systems may be Internet-accessible systems, and users may purchase and redeem tickets using mobile terminals or other devices adapted for wireless communication. Standardized WPKI and Internet access procedures may be employed in ticket issuance and redemption. Techniques further provide temporary and rapid verification data objects useful where rapid ticket verification is essential, such as mass transit systems.
Abstract:
In a communication system in which a transmitter transmits data over a communication channel of a fixed bandwidth to a receiver, the method according to which the transmit data rate is continuously adjusted to a rate which is substantially equal to a short-term average data rate. The channel capacity and/or other characteristics of the system, is continuously adjusted, through changes in transmit power, symbol rate and modulation format, to a level at which the ratio of received signal energy per bit to noise spectral density (Eb/N0) at the receiver is close to but above its minimum acceptable level, thereby matching the channel capacity and/or other characteristics of the system to the traffic. The system has further attributes which adjust the transmit data rate responsive to conditions involving at least one of data traffic levels, power reserve emergency, thermal load and message priority.
Abstract:
An approach to managing stored-value data objects, such as electronic tickets, comprises secure systems and procedures for ticket issuing, storage, and redemption. With these systems and procedures in place, stored-value data objects may be securely transferred to remote systems, such as a user's personal electronic device, for subsequent secure redemption, thus allowing the user to gain access to the desired goods or service upon redeeming the data object. Techniques provide secure delivery of the requested data object to the requesting device, and provide secure redemption and disposal of the data object. Ticket issuing systems may be Internet-accessible systems, and users may purchase and redeem tickets using mobile terminals or other devices adapted for wireless communication. Standardized WPKI and Internet access procedures may be employed in ticket issuance and redemption. Techniques further provide temporary and rapid verification data objects useful where rapid ticket verification is essential, such as mass transit systems.
Abstract:
Apparatus, methods and computer program products that support inter-PLMN coordination in registration and handover operations are provided. Hysteresis is introduced in registration of radioterminals in a hybrid terrestrial/satellite mobile communications environment. Inter-PLMN handover techniques are provided, including techniques for coordination of communication of timing information and traffic channel controls.
Abstract:
A multiple-pipeline system (300) includes a pool (330) of auxiliary function blocks (A-E 335) that are provided as required to select pipelines. Each pipeline (320) in the multiple-pipeline system (300) is configured to include a homogeneous set of core functions (F1-F6). A pool (330) of auxiliary functions (A-E 335) is provided for selective insertion of auxiliary functions (A-E 335) between core functions (F1-F6) of select pipelines. Each auxiliary function includes a multiplexer that allows it to be selectively coupled within each pipeline.
Abstract:
Communications of a mobile station with a satellite mobile communications system and a terrestrial mobile communications system are coordinated. The mobile station is registered with the terrestrial mobile communications system and, responsive to the registration of the mobile station with the terrestrial mobile communications system, the mobile station is concurrently registered with the satellite mobile communications system. The concurrent registration may include implicitly registering the mobile station with the satellite mobile communications system, e.g., by storing information identifying the mobile station may be stored in a location register of the satellite mobile communications system responsive to the registration of the mobile station with the terrestrial mobile communications system, and maintaining synchronization between the two registrations. Authentication tokens may be pre-generated for quick re-registration with a satellite mobile communications system.
Abstract:
A first radio signal is received via a first satellite reception path, for example, an antenna or spot beam, which serves a satellite cell. The received first radio signal includes a desired satellite uplink signal transmitted from a first source using a frequency assigned to the satellite cell and an interfering signal transmitted from at least one second source using the frequency assigned to the satellite cell. A second radio signal is received via a second satellite reception path, for example, via another antenna or spot beam of the system and/or via a satellite antenna beam of another system. The second radio signal includes a measure of the interfering signal. The first and second radio signals are processed to recover the desired satellite uplink signal.