Abstract:
A method of producing a core spun yarn is disclosed. A oriented polyester yarn is drawn through a primary heater and exposed to a cooling plate. The oriented polyester yarn is drawn through a friction twisting unit. A spandex core is drawn from a spandex bobbin to become associated with the oriented polyester yarn. Both the spandex core and the oriented polyester yarn are drawn through an intermingling jet, which texturizes the oriented polyester yarn using a hot air punching technique. The oriented polyester yarn is twisted around the spandex core using he intermingling jet and/or the friction twisting unit. The oriented polyester yarn and the spandex core are drawn through a NFR roller and then heated to form the core spun yarn.
Abstract:
Disclosed are a method, a device and a system of proliferating a thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package. In one or more embodiments, multiple texturized polyester weft yarns of denier between 15 and 50 are wound on a single bobbin in a parallel adjacent fashion such that they may be fed into an air jet pick insertion apparatus of an air jet loom to weave a textile that has between 90 to 235 ends per inch cotton warp yarns and between 100 and 765 polyester weft yarns.
Abstract:
The proliferation of the thread count of a woven textile is accomplished through simultaneous insertion, within a single pick insertion event of a loom apparatus, of multiple adjacent parallel yarns drawn from a multi-pick yarn package. In one or more embodiments, multiple texturized polyester weft yarns of denier between 15 and 50 are wound on a single bobbin in a parallel adjacent fashion such that they may be fed into an air jet pick insertion apparatus of an air jet loom to weave a textile that has between 90 to 235 ends per inch cotton warp yarns and between 100 and 765 polyester weft yarns.
Abstract:
A fluid dispenser is disclosed herein. An example of such a fluid dispenser includes a housing configured to store a quantity of fluid and an ejection assembly configured to controllably emit the fluid through a nozzle. The fluid dispenser also includes a fluid chamber configured both to supply a quantity of the fluid to the ejection assembly and to define a fluid flow path between the housing and the ejection assembly. The fluid dispenser further includes a filter positioned in the fluid flow path and configured both to conduct the fluid from the housing to the fluid chamber and to restrain particles in the fluid from entering the fluid chamber. The filter is further configured to define a bubble flow path that facilitates conduction of bubbles from the fluid chamber to the housing. Additional features of this fluid dispenser are disclosed herein, as are other examples of fluid dispensers.