摘要:
Methods for reducing the amount of water produced from a subterranean formation can include the use of a gellable treatment fluid that comprises a gel-time modifier comprising at least one amino group. The gellable treatment fluids can comprise an aqueous base fluid, a base polymer comprising an acrylamide monomer unit, an organic crosslinking agent, and a get-time modifier comprising at least one amino group.
摘要:
A hydration acceleration surfactant may be utilized in conjunction with high molecular weight polymers in forming high viscosity, aqueous based treatment fluids. Forming such fluids may involve mixing an aqueous base fluid, a hydration acceleration surfactant, a crosslinker polymer, and a base polymer, thereby yielding a treatment fluid, wherein the base polymer is provided in the form of a first polymeric emulsion before mixing and/or the crosslinker polymer is provided in the form of a second polymeric emulsion before mixing. Further, such fluids may be useful in subterranean operations to perform for at least one function within the wellbore and/or the subterranean formation including bridge a fracture, provide fluid loss control, seal a rock surface, enable fluid diversion, plug a void, reduce formation permeability, control water production, and any combination thereof.
摘要:
A treatment fluid for a well including: (a) a water-soluble polymer, wherein the water-soluble polymer comprises a polymer of at least one non-acidic ethylenically unsaturated polar monomer; (b) an organic crosslinker comprising amine groups, wherein the organic crosslinker is capable of crosslinking the water-soluble polymer; (c) a Lewis acid; and (d) water; wherein the treatment fluid is a crosslinkable polymer composition. According to an embodiment, a method for blocking the permeability of a portion of a subterranean formation penetrated by a wellbore is provided, the method including the steps of: (a) selecting the portion of the subterranean formation to be treated; (b) selecting estimated treatment conditions, wherein the estimated treatment conditions comprise temperature over a treatment time; (c) forming the treatment fluid; and (d) injecting the treatment fluid through the wellbore into the portion of the subterranean formation.
摘要:
According to one embodiment, a treatment fluid for a well includes: (a) a water-soluble polymer, wherein the water-soluble polymer comprises a polymer of at least one non-acidic ethylenically unsaturated polar monomer; (b) an organic crosslinker comprising amine groups, wherein the organic crosslinker is capable of crosslinking the water-soluble polymer; (c) a weak organic acid; and (d) water; wherein the treatment fluid is a crosslinkable polymer composition. According to another embodiment, a method for blocking the permeability of a portion of a subterranean formation penetrated by a wellbore is provided, the method including the steps of: (a) selecting the portion of the subterranean formation to be treated; (b) selecting estimated treatment conditions, wherein the estimated treatment conditions comprise temperature over a treatment time; (c) forming a treatment fluid that is a crosslinkable polymer composition comprising: (i) a water-soluble polymer, wherein the water-soluble polymer comprises a polymer of at least one non-acidic ethylenically unsaturated polar monomer; (ii) an organic crosslinker comprising amine groups, wherein the organic crosslinker is capable of crosslinking the water-soluble polymer; (iii) a weak organic acid; and (iv) water; (d) selecting the water-soluble polymer, the crosslinker, the weak organic acid, and the water, and the proportions thereof, such that the gelation time of the treatment fluid is at least 1 hour when tested under the estimated treatment conditions; and (e) injecting the treatment fluid through the wellbore into the portion of the subterranean formation.
摘要:
Hydraulic cement compositions are provided that include a cement, water; and a dispersant that comprises a low molecular weight starch with anionic groups. The starch dispersants provided may possess desirable biodegradable properties making them particularly suitable for certain downhole well operations.
摘要:
Methods of cementing in a subterranean formation may include the steps of: providing a cement composition comprising a cement, water, and a dispersant comprising a low molecular weight starch that comprises anionic groups; placing the cement composition in the subterranean formation; and allowing the cement composition to set therein. In certain embodiments, improved biodegradable dispersants may include low molecular weight starches having anionic groups.
摘要:
Methods of consolidating formations include drilling a well bore with a drilling fluid that comprises water, a polymeric cationic catalyst which is adsorbed on minerals and rocks in weak unconsolidated zones or formations and then further contacting the unconsolidated formation with a treating fluid comprising a water soluble or dispersible polymer which is cross-linked by a thermoset resin and causes the resin to be hard and tough when cured, and a water soluble or dispersible thermoset resin which cross-links the polymer, is catalyzed and cured by the catalyst and consolidates the weak zone or formation so that sloughing is prevented.
摘要:
Methods of consolidating formations or forming chemical casing or both while drilling are provided. One method of the invention comprises drilling a well bore with a drilling fluid comprised of water, a polymeric cationic catalyst which is adsorbed on weak zones or formations formed of unconsolidated clays, shale, sand stone and the like, a water soluble or dispersible polymer which is cross-linked by a thermoset resin and causes the resin to be hard and tough when cured, a particulate curable solid thermoset resin, a water soluble thermoset resin, and a delayed dispersible acid catalyst for curing the solid and water soluble resins. The drilling fluid forms a filter cake on the walls of the well bore that cures and consolidates the unconsolidated weak zones and formations penetrated by the well bore so that sloughing is prevented and forms a hard and tough cross-linked chemical casing on the walls of the well bore.
摘要:
According to one embodiment, a treatment fluid for a well includes: (a) a water-soluble polymer, wherein the water-soluble polymer comprises a polymer of at least one non-acidic ethylenically unsaturated polar monomer; (b) an organic crosslinker comprising amine groups, wherein the organic crosslinker is capable of crosslinking the water-soluble polymer; (c) a salt of a weak Bronsted base and a Bronsted acid; and (d) water; wherein the treatment fluid is a crosslinkable polymer composition. According to another embodiment, a method for blocking the permeability of a portion of a subterranean formation penetrated by a wellbore is provided, the method including the steps of: (a) selecting the portion of the subterranean formation to be treated; (b) selecting estimated treatment conditions, wherein the estimated treatment conditions comprise temperature over a treatment time; (c) forming a treatment fluid that is a crosslinkable polymer composition comprising: (i) a water-soluble polymer, wherein the water-soluble polymer comprises a polymer of at least one non-acidic ethylenically unsaturated polar monomer; (ii) an organic crosslinker comprising amine groups, wherein the organic crosslinker is capable of crosslinking the water-soluble polymer; (iii) a salt of a weak Bronsted base and a Bronsted acid; and (iv) water; (d) selecting the water-soluble polymer, the crosslinker, the salt of a weak Bronsted base and a Bronsted acid, and the water, and the proportions thereof, such that the gelation time of the treatment fluid is at least 1 hour when tested under the estimated treatment conditions; and (e) injecting the treatment fluid through the wellbore into the portion of the subterranean formation.
摘要:
Methods for reducing the amount of water produced from a subterranean formation can include the use of a gellable treatment fluid that comprises a quaternary ammonium salt as a gel-time modifier. The gellable treatment fluids can comprise an aqueous base fluid, a base polymer comprising an acrylamide monomer unit, an organic crosslinking agent, and a gel-time modifier comprising a quaternary ammonium salt.