Abstract:
The present invention relates to the technical field of vehicles, and provides an energy conversion device and a vehicle. The energy conversion device includes a reversible pulse-width modulation (PWM) rectifier, a motor coil connected with the reversible PWM rectifier, a one-way conduction module, and a capacitor. A DC charging circuit or a DC discharging circuit is formed by an external DC port with an external battery by using the energy conversion device, and a driving circuit is formed by the external battery with the reversible PWM rectifier and the motor coil in the energy conversion device. The one-way conduction module is connected between a first end of the capacitor and a second end of the external DC port, or the one-way conduction module is connected between a second end of the capacitor and a first end of the external DC port.
Abstract:
A vehicle body structure and a vehicle are provided. The vehicle body structure includes a front longitudinal beam, a front compartment crossbeam, and a dash panel. The front longitudinal beam includes a left front longitudinal beam and a right front longitudinal beam that are disposed at an interval in a transverse direction. The front compartment crossbeam is mounted on the left front longitudinal beam and the right front longitudinal beam, and is located in front of the dash panel. A projection area of the front compartment crossbeam on the dash panel in an X direction at least partially covers a projection of a preset area surrounding a pedal center point on the dash panel in the X direction.
Abstract:
The present disclosure provides a hybrid electric vehicle, a drive control method and a drive control device of a hybrid electric vehicle. The drive control method includes: obtaining a current gear position of the hybrid electric vehicle and a current electric charge level of a power battery; determining whether the vehicle is within a speed start-stop interval according to the current gear position of the hybrid electric vehicle and the current electric charge level of the power battery; obtaining a slope of a road on which the vehicle is driving and a current speed of the hybrid electric vehicle, if the vehicle is within a speed start-stop interval; and controlling a working state of an engine and/or a motor of the hybrid electric vehicle according to the slope of the road on which the vehicle is driving and the current speed of the vehicle.
Abstract:
The present disclosure provides a drive control method, a drive control device of a hybrid electric vehicle and a hybrid electric vehicle. The drive control method includes: obtaining a current gear position of the hybrid electric vehicle, a current electric charge level of a power battery and a slope of a road on which the hybrid electric vehicle is driving; obtaining a current speed of the hybrid electric vehicle if the current gear position of the hybrid vehicle, the current electric charge level of the power battery, and the slope of the road on which the hybrid electric vehicle is driving meet a preset requirement; and causing the hybrid electric vehicle to enter a small load stop mode if the current speed is greater than or equal to a first speed threshold, and less than a second speed threshold.
Abstract:
The present disclosure provides a hybrid electric vehicle, a drive control method and a drive control device of a hybrid electric vehicle. The drive control method includes: obtaining a current gear position of the hybrid electric vehicle and a current electric charge level of a power battery; obtaining a slope of a road on which the hybrid electric vehicle is driving, if the current gear position of the hybrid electric vehicle and the current electric charge level of the power battery meet a preset requirement; and causing a working state of an engine and/or a motor of the hybrid electric vehicle according to the slope of the road on which the hybrid electric vehicle is driving.
Abstract:
A power transmission system for a vehicle includes: an engine; input shafts, each of the input shafts being provided with a shift driving gear thereon; output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving gear; a generator gear fixed on one of the output shafts; a reverse output gear configured to rotate together with or to disengage from a shift driving gear; an output idler gear configured to engage with one of the output shafts so as to rotate together with the output shaft or disengage from the output shaft so as to rotate with the output shaft at different speeds; a motor power shaft configured to rotate together with the generator gear; and a first motor generator configured to rotate together with the motor power shaft. A vehicle including the power transmission system is also provided.
Abstract:
A power transmission system for a vehicle includes: an engine; a plurality of input shafts, wherein at least one of the input shafts is configured to selectively engage with the engine; a plurality of output shafts configured to mesh with a corresponding shift driving gear; a transmission gear provided on one of the output shafts; a motor power shaft; a first and a second motor gears fitted over the motor power shaft; a motor synchronizer; a reverse gear fitted over the motor power shaft; a middle idler configured to mesh with the shift driving gear provided on one of the input shafts; a reverse idler gear configured to mesh with the reverse gear and to selectively rotate together with the middle idler; and a first motor generator configured to operate correspondingly with the motor power shaft. A vehicle including the power transmission system is also provided.
Abstract:
A transmission unit for a vehicle is provided. The transmission unit includes: a plurality of input shafts, each of the input shafts being provided with a shift driving gear thereon; a plurality of output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving gear; a motor power shaft; first and second motor gears fitted over the motor power shaft; a motor synchronizer disposed on the motor power shaft and between the first and second motor gears; in which the first motor gear is configured to rotate together with one of the input shafts; the second motor gear is configured to rotate together with one of the output shafts. A power transmission system including the transmission unit and a vehicle including the power transmission system are also provided.
Abstract:
A method for controlling a synchronizer of a vehicle is provided. The vehicle comprises an engine unit, a transmission unit configured to selectively couple with the engine unit and to couple with at least one of a plurality of wheels of the vehicle, a synchronizer configured to adjust a power transmission between the transmission unit and the wheels. The method comprises acquiring an operation mode and operation parameters of the vehicle and controlling the synchronizer to adjust the power transmission between the transmission unit and the wheels based on the operation parameters. A vehicle including a controller configured to control the synchronizer according to the method is also provided. The vehicle further includes a first motor generator configured to adjust a rotating speed of the synchronizer according to a speed of the vehicle, and a second motor generator configured to drive at least one of wheels of the vehicle.
Abstract:
A battery self-heating device, comprising: a bridge arm converter, an energy storage element, an inductor and a controller. The controller is configured to control, in a preset state, the connection and disconnection of the bridge arm converter, such that a first power battery and a second power battery are respectively charged/discharged by means of the inductor, and each form a freewheeling circuit by means of the energy storage element, so as to realize the continuous heating of the first power battery and the second power battery.