Abstract:
A method of operating a fuel cell system includes providing an anode exhaust from a fuel cell stack to a water injector, supplying water to the water injector, and injecting the water from the water injector into the anode exhaust to vaporize the water and generate a humidified anode exhaust.
Abstract:
A fuel cell system includes fuel cells disposed in a stack and separated by interconnects, a cathode recuperator configured to heat air provided to the stack using reaction exhaust provided from the stack, a steam generator configured to receive the reaction exhaust from the cathode recuperator and generate steam using the reaction exhaust, a hot box housing the stack, cathode recuperator, and steam generator, and a Cr filter including a porous metal and configured to remove Cr vapor species from the reaction exhaust.
Abstract:
A fuel cell system and method of operating the same, the system including: a fuel cell stack and a reaction zone configured to receive a fuel/air mixture; an electromagnetic induction glow plug configured to heat the fuel/air mixture; and an alternating current (AC) generator configured to provide an AC voltage to the glow plug. The glow plug includes a housing extending outside of the hotbox, a heating element disposed in the housing, and a coil coiled around the housing, electrically connected to the AC generator, and configured to inductively heat the heating element.
Abstract:
A fuel cell system includes a plurality of fuel cell stacks or columns, each fuel cell stack or column containing a plurality of fuel cells, and at least one pressure drop tool located in a fuel path of at least one first fuel cell stack or column but not in a fuel path of at least one second fuel cell stack or column.
Abstract:
A method for testing a fuel cell stack includes providing a fluid, such as an ammonia-containing fluid, in a first reactant flow path in a first portion of the fuel cell stack, detecting the presence of the fluid using a detector, such as an ammonia detector, positioned within or adjacent to a second portion of the fuel cell stack that is separated from the first portion of the fuel cell stack and determining the presence of a defect in the stack based on detecting the presence of the fluid. Further embodiments relate to testing a fuel cell stack using a microphone that detects an audio signal indicative of a stack defect.
Abstract:
A spring compression assembly is configured to apply a load to a stack of electrochemical cells. The assembly includes a ceramic leaf spring, a tensioner configured to apply pressure to a first side of the spring and a bottom plate located on a second side of the spring opposite the first side of the spring. The bottom plate is configured to transfer a load from the spring to the stack of electrochemical cells.