APPARATUS AND METHODS FOR PROGRAMMING AND TRAINING OF ROBOTIC HOUSEHOLD APPLIANCES

    公开(公告)号:US20190380551A1

    公开(公告)日:2019-12-19

    申请号:US16454199

    申请日:2019-06-27

    Abstract: Apparatus and methods for training and operating of robotic appliances. Robotic appliance may be operable to clean user premises. The user may train the appliance to perform cleaning operations in constrained areas. The appliance may be configured to clean other area of the premises automatically. The appliance may perform premises exploration and/or determine map of the premises. The appliance may be provided priority information associated with areas of the premises. The appliance may perform cleaning operations in order of the priority. Robotic vacuum cleaner appliance may be configured for safe cable operation wherein the controller may determine one or more potential obstructions (e.g., a cable) along operating trajectory. Upon approaching the cable, the controller may temporarily disable brushing mechanism in order to prevent cable damage.

    APPARATUS AND METHODS FOR EVENT-TRIGGERED UPDATES IN PARALLEL NETWORKS
    45.
    发明申请
    APPARATUS AND METHODS FOR EVENT-TRIGGERED UPDATES IN PARALLEL NETWORKS 有权
    并行网络中事件触发更新的设备和方法

    公开(公告)号:US20140250036A1

    公开(公告)日:2014-09-04

    申请号:US14198446

    申请日:2014-03-05

    CPC classification number: G06N3/08 G05B13/027 G06N3/049 G06N3/10

    Abstract: A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. The software and hardware engines are optimized to take into account short-term and long-term synaptic plasticity in the form of LTD, LTP, and STDP.

    Abstract translation: 公开了一种简单的格式,并被称为基本网络描述(END)。 该格式可以充分描述大规模神经元模型和软件或硬件引擎的实施例,以有效地模拟这种模型。 这种神经形态发动机的架构对于具有尖峰时间依赖可塑性的加标网络的高性能并行处理是最佳的。 软件和硬件引擎经过优化考虑了LTD,LTP和STDP形式的短期和长期突触可塑性。

    APPARATUS AND METHODS FOR ACTIVITY-BASED PLASTICITY IN A SPIKING NEURON NETWORK
    46.
    发明申请
    APPARATUS AND METHODS FOR ACTIVITY-BASED PLASTICITY IN A SPIKING NEURON NETWORK 有权
    SPIKEING神经网络中基于活动的塑性的装置和方法

    公开(公告)号:US20140122399A1

    公开(公告)日:2014-05-01

    申请号:US13660967

    申请日:2012-10-25

    CPC classification number: G06N3/049 G06N3/063 G06N3/088

    Abstract: Apparatus and methods for plasticity in spiking neuron network. The network may comprise feature-specific units capable of responding to different objects (red and green color). Plasticity mechanism may be configured based on difference between two similarity measures related to activity of different unit types obtained during network training. One similarity measure may be based on activity of units of the same type (red). Another similarity measure may be based on activity of units of one type (red) and another type (green). Similarity measures may comprise a cross-correlogram and/or mutual information determined over an activity window. Several similarity estimates, corresponding to different unit-to-unit pairs may be combined. The combination may comprise a weighted average. During network operation, the activity based plasticity mechanism may be used to potentiate connections between units of the same type (red-red). The plasticity mechanism may be used to depress connections between units of different types (red-green).

    Abstract translation: 尖峰神经元网络中可塑性的装置和方法。 网络可以包括能够响应不同对象(红色和绿色)的特征单元。 可塑性机制可以基于在网络训练期间获得的不同单元类型的活动的两个相似性度量之间的差异来配置。 一个相似性度量可以基于相同类型(红色)的单元的活动。 另一种相似性度量可以基于一种类型(红色)和另一种类型(绿色)的单位的活动。 相似性度量可以包括在活动窗口上确定的交叉相关图和/或相互信息。 可以组合对应于不同单元到单元对的几个相似性估计。 该组合可以包括加权平均值。 在网络运行期间,基于活动的可塑性机制可用于加强相同类型(红 - 红)单元之间的连接。 可塑性机制可用于抑制不同类型(红 - 绿)单元之间的连接。

Patent Agency Ranking