摘要:
Source and drain regions are formed in a first-type semiconductor device. Then, a high tensile stress capping layer is formed over the source and drain regions. A thermal process is then performed to re-crystallize the source and drain regions and to introduce tensile strain into the source and drain regions of the first-type semiconductor device. Afterwards, source and drain regions are formed in a second-type semiconductor device. Then, a high compressive stress capping layer is formed over the source and drain regions of the second-type semiconductor device. A thermal process is performed to re-crystallize the source and drain regions and to introduce compressive strain into the source and drain regions of the second-type semiconductor device.
摘要:
A method of manufacturing a semiconductor device includes forming transistors including gate electrodes and source/drain regions over a substrate. A protective layer is placed over the source/drain regions and the gate electrodes. A portion of the protective layer is removed to expose a portion of the gate electrodes. The exposed portions of the gate electrodes are amorphized, and remaining portions of the protective layer located over the source/drain regions are removed. A stress memorization layer is formed over the gate electrodes, and the substrate is annealed in the presence of the stress memorization layer to at least reduce an amorphous content of the gate electrodes. The stress memorization layer is removed subsequent to the annealing.
摘要:
Exemplary embodiments provide IC CMOS devices having dual stress layers and methods for their manufacture using a buffer layer stack between the two types of the stress layers. The buffer layer stack can include multiple buffer layers formed between a first type stress layer (e.g., a tensile stress layer) and a second type stress layer (e.g., a compressive stress layer) during the CMOS fabrication. Specifically, the buffer layer stack can be formed after the etching process of the first type stress layer but prior to the etching process of the second type stress layer, and thus to protect the etched first type stress layer during the subsequent etching process of the overlaid second type stress layer. In addition, a portion of the buffer layer stack can be formed between, for example, the compressive stress layer and the underlying PMOS device to enhance their adhesion.
摘要:
A method for making PMOS and NMOS transistors 60, 70 on a semiconductor substrate 20 that includes having a gate protection layer 210 over the gate electrode layer 110 during the formation of source/drain silicides 120. The method may include implanting dopants into a gate polysilicon layer 115 before forming the protection layer 215.
摘要:
A method for removing dielectric material 50 from a semiconductor wafer 20 that contains metal silicide 60 or 90. The method includes performing a selective etch 202 of the semiconductor wafer 20 using an organic semi-aqueous solvent-based etchant until the dielectric material 50 is substantially removed and then rinsing 204 the semiconductor wafer 20 including a surface, 63 or 93, of the metal silicide, 60 or 90 respectively, of the semiconductor wafer 20.
摘要:
A technique is disclosed for increasing the width of a transistor (300) while the transistor itself may be scaled down. The transistor width (382) is increased by forming recesses (352) within shallow trench isolation (STI) regions (328) adjacent to the transistor (300). The recesses (352) provide an area that wraps around the transistor and thereby increases the width (382) of the transistor (300). This wraparound area provides additional space for dopant atom deposition, which facilitates a reduction in random dopant fluctuation (RDF). In this manner, transistors formed in accordance with one or more aspects of the present invention, may yield improved performance when incorporated into SRAM since the probability that such transistors will be more closely matched is increased.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit including the semiconductor device. The method for manufacturing the semiconductor device, among other possible steps, forming a polysilicon gate electrode (250) over a substrate (210) and forming a protective layer (260) over the polysilicon gate electrode (250) to provide a capped polysilicon gate electrode (230). The method further includes forming a protective oxide (510) on a surface proximate the polysilicon gate electrode (250), and removing the protective oxide (510) using a wet etch, the wet etch not having a substantial impact on the protective layer (260).
摘要:
A technique is disclosed for increasing the width of a transistor (300) while the transistor itself may be scaled down. The transistor width (382) is increased by forming recesses (352) within shallow trench isolation (STI) regions (328) adjacent to the transistor (300). The recesses (352) provide an area that wraps around the transistor and thereby increases the width (382) of the transistor (300). This wraparound area provides additional space for dopant atom deposition, which facilitates a reduction in random dopant fluctuation (RDF). In this manner, transistors formed in accordance with one or more aspects of the present invention, may yield improved performance when incorporated into SRAM since the probability that such transistors will be more closely matched is increased.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit including the semiconductor device. The method for manufacturing the semiconductor device, among other possible steps, forming a polysilicon gate electrode (250) over a substrate (210) and forming a protective layer (260) over the polysilicon gate electrode (250) to provide a capped polysilicon gate electrode (230). The method further includes forming a protective oxide (510) on a surface proximate the polysilicon gate electrode (250), and removing the protective oxide (510) using a wet etch, the wet etch not having a substantial impact on the protective layer (260).
摘要:
A photosensitive device for enabling high speed detection of electromagnetic radiation. The device includes recessed electrodes for providing a generally homogeneous electric field in an active region. Carriers generated in the active region are detected using the recessed electrodes.