Abstract:
Glass-ceramics exhibiting a Vickers indentation crack initiation threshold of at least 15 kgf are disclosed. These glass-ceramics may be ion exchangeable or ion exchanged. The glass-ceramics include a crystalline and amorphous phases generated by subjecting a thin precursor glass article to ceramming cycle having an average cooling rate in the range from about 10° C./minute to about 25° C./minute. In one or more embodiments, the crystalline phase may comprise at least 20 wt % of the glass-ceramics. The glass-ceramics may include β-spodumene ss as the predominant crystalline phase and may exhibit an opacity ≥ about 85% over the wavelength range of 400-700 nm for an about 0.8 mm thickness and colors an observer angle of 10° and a CIE illuminant F02 determined with specular reflectance included of a* between −3 and +3, b* between −6 and +6, and L* between 88 and 97.
Abstract:
Glass-ceramics exhibiting a Vickers indentation crack initiation threshold of at least 15 kgf are disclosed. These glass-ceramics may be ion exchangeable or ion exchanged. The glass-ceramics include a crystalline and amorphous phases generated by subjecting a thin precursor glass article to ceramming cycle having an average cooling rate in the range from about 10° C./minute to about 25° C./minute. In one or more embodiments, the crystalline phase may comprise at least 20 wt % of the glass-ceramics. The glass-ceramics may include β-spodumene ss as the predominant crystalline phase and may exhibit an opacity≥about 85% over the wavelength range of 400-700 nm for an about 0.8 mm thickness and colors an observer angle of 10° and a CIE illuminant F02 determined with specular reflectance included of a* between −3 and +3, b* between −6 and +6, and L* between 88 and 97.
Abstract:
Glass manufacturing apparatus can comprise a laser apparatus defining a laser path intersecting an outer peripheral surface of a roll. In some embodiments, methods of cleaning a roll of a glass manufacturing apparatus can comprise irradiating a target location on surface material formed on the roll with a laser beam and producing a relative movement between the roll and the target location while removing a portion of the surface material from an area of the outer peripheral surface of the roll with the laser beam. In some embodiments, methods of manufacturing a glass ribbon can comprise passing glass-forming material through a gap defined between first and second rotating rolls and removing surface material from an area of an outer peripheral surface of the first roll with a first laser beam.
Abstract:
A slot orifice design that delivers glass ribbon at a uniform temperature and flow across the slot orifice width is provided. The slot orifice design can include a transition section, a pressure tank, and a slot extension.
Abstract:
Glass-ceramics exhibiting a Vickers indentation crack initiation threshold of at least 15 kgf are disclosed. These glass-ceramics may be ion exchangeable or ion exchanged. The glass-ceramics include a crystalline and amorphous phases generated by subjecting a thin precursor glass article to ceramming cycle having an average cooling rate in the range from about 10° C./minute to about 25° C./minute. In one or more embodiments, the crystalline phase may comprise at least 20 wt % of the glass-ceramics. The glass-ceramics may include β-spodumene ss as the predominant crystalline phase and may exhibit an opacity ≥about 85% over the wavelength range of 400-700 nm for an about 0.8 mm thickness and colors an observer angle of 10° and a CIE illuminant F02 determined with specular reflectance included of a* between −3 and +3, b* between −6 and +6, and L* between 88 and 97.
Abstract:
Disclosed is an apparatus and method of making molten glass. The apparatus includes a glass former having a slot orifice design to deliver a glass ribbon. The slot orifice design can include a transition section, a slot extension, and external structural reinforcements. In some embodiments, the orifice opening distance of the slot extension varies along the width of the orifice. In some embodiments, the orifice has an orifice opening distance that is smaller at the center of the slot extension than at the edges of the slot extension, which limits glass flow at the center of the slot extension. Also disclosed is a method of making glass using the disclosed apparatus.
Abstract:
The present disclosure provides an apparatus and method for modifying the shape of a hollow structure. The method may comprise steps of providing a hollow structure having a cross-section with first and second diameters defining a first aspect ratio; heating at least a part of the hollow structure to at least its glass transition temperature, forming a malleable hollow structure; maintaining a positive pressure inside the malleable hollow structure to form a pressurized hollow structure; and pressing against a first side and an opposed second side of a heated part of the pressurized hollow structure, forming a hollow tabular structure having first and second opposed generally flat faces and a second aspect ratio greater than the first aspect ratio.
Abstract:
The present invention is directed to methods for making high quality glass tubes, and apparatuses for making high quality glass tubes. Because glass tubes made using the methods and apparatuses disclosed herein are substantially free from the optical defect known as paneling, the glass tubes may be used in displays for consumer electronic devices. The glass tubes are made by a continuous process in which a flow of molten glass is provided on an inner surface of a hollow, rotating mandrel such that the glass coats the inner surface of the mandrel and flows downstream on the inner surface of the mandrel, during which it is cooled to provide a higher viscosity. The glass is then removed from the mandrel and drawn to obtain a glass tube. A flow of molten glass may also be provided on the outer surface of the mandrel and joined with the glass flow on the inner surface of the mandrel when the glass flows exit the mandrel. The apparatuses presented herein are configured to provide high quality glass tubes using this method.
Abstract:
A method for bending a sheet of material into a shaped article includes providing the sheet of material. A reformable area and a non-reformable area of the sheet of material are heated to a first temperature range corresponding to a first viscosity range. The reformable area of the sheet of material is subsequently heated to a second temperature range corresponding to a second viscosity range. The reformable area of the sheet of material is reformed into a selected shape by at least one of sagging the reformable area of the sheet of material and applying a force to the sheet of material outside of or near a boundary of the reformable area.
Abstract:
A method for bending a sheet of material into a shaped article includes providing the sheet of material. A reformable area and a non-reformable area of the sheet of material are heated to a first temperature range corresponding to a first viscosity range. The reformable area of the sheet of material is subsequently heated to a second temperature range corresponding to a second viscosity range. The reformable area of the sheet of material is reformed into a selected shape by at least one of sagging the reformable area of the sheet of material and applying a force to the sheet of material outside of or near a boundary of the reformable area.