Stress profiles of glass-based articles having improved drop performance

    公开(公告)号:US12162801B2

    公开(公告)日:2024-12-10

    申请号:US17480348

    申请日:2021-09-21

    Abstract: Glass-based articles comprise stress profiles providing improved drop performance. A glass-based substrate comprises: a glass transition temperature (Tg), a liquid fragility index (m), and fictive temperature (Tf), wherein Tg is less than or equal to 650° C., a value of Tf minus Tg is greater than or equal to −30° C., and m is greater than or equal to 25. A stress relaxation rate is greater than or equal to 10%, or 20% or more. The articles can comprise a lithium-based aluminosilicate composition and a fracture toughness that is greater than or equal to 0.75 MPa*m0.5. The stress profiles comprise: a spike region extending from the first surface to a knee; and a tail region extending from the knee to a center of the glass-based article, the tail region comprising: a negative curvature region wherein a second derivative of stress as a function of depth is negative; a depth of compression (DOC) that is greater than or equal to 0.22 t, and a parabolic region originating at the DOC and extending to the center of the glass-based article.

    Glass-based articles with engineered stress profiles and methods of manufacture

    公开(公告)号:US11560332B2

    公开(公告)日:2023-01-24

    申请号:US16337137

    申请日:2017-09-25

    Abstract: Strengthened glass-based substrates having a first outer region compressive stress and a first side having first coating thereon are disclosed. The first coating comprising a material selected to have a first coating Young's modulus value, a first coating thickness, and a first coating stress that is either neutral or compressive, such that the absolute value of first outer region compressive stress is greater than the absolute value of the first coating stress. Methods of making glass-based articles are provided, and glass-based articles having coatings that provide different strength values and/or reliability on different sides of the glass-based articles are also disclosed.

    COMPENSATED MOLDS FOR MANUFACTURING GLASS-BASED ARTICLES HAVING NON-UNIFORM THICKNESSES

    公开(公告)号:US20220135472A1

    公开(公告)日:2022-05-05

    申请号:US17433790

    申请日:2020-02-20

    Abstract: Methods for compensating for warp typically exhibited by glass-based articles having non-uniform thicknesses as a result of ion exchange strengthening are provided. The methods include producing a molding surface of a mold based on a measurement of warp obtained by a specified ion exchange strengthening of a glass-based substrate of non-uniform thickness, such that the molding surface offsets the warp. Glass-based substrates resulting from the mold can then be exposed to the specified ion exchange strengthening and form glass-based articles that are substantially free of warp.

    STRESS PROFILES OF GLASS-BASED ARTICLES HAVING IMPROVED DROP PERFORMANCE

    公开(公告)号:US20220098096A1

    公开(公告)日:2022-03-31

    申请号:US17480348

    申请日:2021-09-21

    Abstract: Glass-based articles comprise stress profiles providing improved drop performance. A glass-based substrate comprises: a glass transition temperature (Tg), a liquid fragility index (m), and fictive temperature (Tf), wherein Tg is less than or equal to 650° C., a value of Tf minus Tg is greater than or equal to −30° C., and m is greater than or equal to 25. A stress relaxation rate is greater than or equal to 10%, or 20% or more. The articles can comprise a lithium-based aluminosilicate composition and a fracture toughness that is greater than or equal to 0.75 MPa*m0.5. The stress profiles comprise: a spike region extending from the first surface to a knee; and a tail region extending from the knee to a center of the glass-based article, the tail region comprising: a negative curvature region wherein a second derivative of stress as a function of depth is negative; a depth of compression (DOC) that is greater than or equal to 0.22 t, and a parabolic region originating at the DOC and extending to the center of the glass-based article.

Patent Agency Ranking