摘要:
An apparatus and a method comprising same for removing metal oxides from a substrate surface are disclosed herein. In one particular embodiment, the apparatus comprises an electrode assembly that has a housing that is at least partially comprised of an insulating material and having an internal volume and at least one fluid inlet that is in fluid communication with the internal volume; a conductive base connected to the housing comprising a plurality of conductive tips that extend therefrom into a target area and a plurality of perforations that extend therethrough and are in fluid communication with the internal volume to allow for a passage of a gas mixture comprising a reducing gas.
摘要:
A method of detecting and calibrating dry fluxing metal surfaces of one or more components to be soldered by electron attachment using a gas mixture of reducing gas comprising hydrogen and deuterium, comprising the steps of: a) providing one or more components to be soldered which are connected to a first electrode as a target assembly; b) providing a second electrode adjacent the target assembly; c) providing a gas mixture comprising a reducing gas comprising hydrogen and deuterium between the first and second electrodes; d) providing a direct current (DC) voltage to the first and second electrodes to form an emission current between the electrodes and donating electrons to the reducing gas to form negatively charged ionic reducing gas and molecules of hydrogen bonded to deuterium; e) contacting the target assembly with the negatively charged ionic reducing gas and reducing oxides on the target assembly. Related apparatus is also disclosed.
摘要:
A method of dry fluxing metal surfaces of one or more components to be soldered, comprising the steps of: a) providing one or more components to be soldered which are connected to a first electrode as a target assembly; b) providing a second electrode adjacent the target assembly; c) providing a gas mixture comprising a reducing gas between the first and second electrodes; d) providing a direct current (DC) voltage to the first and second electrodes and donating electrons to the reducing gas to form negatively charged ionic reducing gas; e) contacting the target assembly with the negatively charged ionic reducing gas and reducing oxides on the target assembly.