Abstract:
A data storage system, according to certain aspects, automatically backs up source data when the replication data is faulty. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. When permitted by the user system configuration, the system automatically backs up source data when replication has failed.
Abstract:
A data storage system according to certain aspects can archive database data associated with different database applications. The data storage system according to certain aspects may provide database archiving modules that include logic incorporating and/or based on the native schema and/or native commands specific to particular database applications. The database archiving modules according to certain aspects may determine the relationship between tables associated with corresponding database applications and archive selected database data based on the native schema and native commands.
Abstract:
A disclosed framework enables virtually any aggressive Recovery Point Objective (RPO) to be enforced for a production database, without limitation on type of database management system (DBMS) or size of the production database. The framework overcomes technological barriers of the prior art, such as bottlenecks presented by a storage manager computer that traditionally managed database backups. To avoid the bottlenecks, an illustrative data storage management system does not engage the storage manager computer in storage operations that could impact the database RPO. Certain components are added and enhanced to autonomously capture database transaction logs, which are stored securely and persistently away from the DBMS. In a separate and less frequent operation, and with involvement of the storage manager computer, the illustrative system generates secondary copies in their final form. Meanwhile, temporary backup files can be used in restore operations without first being converted into secondary copies.
Abstract:
Storage managers are used in data storage management systems for license distribution, compliance, and updates. A licensed quota is managed at an aggregate level applicable to a collective plurality of storage operation cells and not by licensing each individual storage operation cell. A multi-cell environment belonging to a given customer is licensed by using an enhanced storage manager in each cell. One storage manager is a “license server” to the other storage managers or “child licensees.” A licensor issues a global license to the customer's designated license server, which distributes child licenses and manages other licensing aspects. Rather than licensing usage for individual storage operation cells, licensed usage is managed at an aggregate level using the license server and child licensees in a “self-service” model.
Abstract:
A streamlined approach enables customers to retain management control over their data in a database-as-a-service (“DBaaS”) setting, by providing managed backup copies outside cloud service providers' sphere of control. An illustrative data storage management system provides control over performing backup operations to generate managed backup copies, storing managed backup copies, recovering managed backup copies in whole or in part, migrating managed backup copies, and migrating DBaaS instances. Management control also extends to choices of where to store the managed backup copies, whether on the same cloud computing platform as the source DBaaS, on a different cloud computing platform, and/or in a non-cloud data center.
Abstract:
A streamlined approach enables customers to retain management control over their data in a database-as-a-service (“DBaaS”) setting, by providing managed backup copies outside cloud service providers' sphere of control. An illustrative data storage management system provides control over performing backup operations to generate managed backup copies, storing managed backup copies, recovering managed backup copies in whole or in part, migrating managed backup copies, and migrating DBaaS instances. Management control also extends to choices of where to store the managed backup copies, whether on the same cloud computing platform as the source DBaaS, on a different cloud computing platform, and/or in a non-cloud data center.
Abstract:
Storage managers are used in data storage management systems for license distribution, compliance, and updates. A licensed quota is managed at an aggregate level applicable to a collective plurality of storage operation cells and not by licensing each individual storage operation cell. A multi-cell environment belonging to a given customer is licensed by using an enhanced storage manager in each cell. One storage manager is a “license server” to the other storage managers or “child licensees.” A licensor issues a global license to the customer's designated license server, which distributes child licenses and manages other licensing aspects. Rather than licensing usage for individual storage operation cells, licensed usage is managed at an aggregate level using the license server and child licensees in a “self-service” model.
Abstract:
An illustrative “Live Synchronization” feature creates and maintains a ready standby “synchronized application” that is available to take over as a failover solution for a “primary” application that operates in a production environment, but will do so on a different computing platform (e.g., physical server, virtual machine, container, etc.), and possibly on a differed kind of computing platform than, the primary. The illustrative system has specialized features and components for discovering and singling out each primary application and identifying and locating its disk image, e.g., VMDK file. The application is Live Synched to the standby/failover application without reference to whether and how other co-resident applications might be treated. The standby/failover destination supporting the synchronized application may be located anywhere, whether in the same data center as the primary or geographically remote or in a private or public cloud setting.
Abstract:
Systems and methods are disclosed for speedily upgrading (e.g., via service packs) components of a storage management system, such as media agents and data agents, which may number in the thousands. The disclosed methods and systems provide a lightweight and flexible approach. Executable files such as service packs are deployed to a network-shared file system and are served on demand to each targeted host computing device to launch a data agent and/or media agent component. New service packs (e.g., upgrades) are installed on another shared drive and the connection thereto is refreshed by each targeted storage management component to begin executing the new version on demand. The resultant overall upgrade process across the storage management system may be substantially shortened, and the network burden greatly reduced.
Abstract:
According to certain aspects, a system may include a data agent configured to: process a database file residing on a primary storage device(s) to identify a subset of data in the database file for archiving, the database file generated by a database application; and extract the subset of the data from the database file and store the subset of the data in an archive file on the primary storage device(s) as a plurality of blocks having a common size; and at least one secondary storage controller computer configured to, as part of a secondary copy operation in which the archive file is copied to a secondary storage device(s): copy the plurality of blocks to the secondary storage devices to create a secondary copy of the archive file; and create a table that provides a mapping between the copied plurality of blocks and corresponding locations in the secondary storage device(s).