Systems and methods for analog processing of problem graphs having arbitrary size and/or connectivity

    公开(公告)号:US11348026B2

    公开(公告)日:2022-05-31

    申请号:US16778295

    申请日:2020-01-31

    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples. A controller causes a processing operation on the partial samples to generate complete samples.

    SYSTEMS AND METHODS FOR HYBRID ANALOG AND DIGITAL PROCESSING OF A COMPUTATIONAL PROBLEM USING MEAN FIELD UPDATES

    公开(公告)号:US20200311591A1

    公开(公告)日:2020-10-01

    申请号:US16830650

    申请日:2020-03-26

    Abstract: A hybrid computing system for solving a computational problem includes a digital processor, a quantum processor having qubits and coupling devices that together define a working graph of the quantum processor, and at least one nontransitory processor-readable medium communicatively coupleable to the digital processor which stores at least one of processor-executable instructions or data. The digital processor receives a computational problem, and programs the quantum processor with a first set of bias fields and a first set of coupling strengths. The quantum processor generates samples as potential solutions to an approximation of the problem. The digital processor updates the approximation by determining a second set of bias fields based at least in part on the first set of bias fields and a first set of mean fields that are based at least in part on the first set of samples and coupling strengths of one or more virtual coupling devices.

    SYSTEMS AND METHODS FOR HYBRID ALGORITHMS USING CLUSTER CONTRACTION

    公开(公告)号:US20200234172A1

    公开(公告)日:2020-07-23

    申请号:US16741208

    申请日:2020-01-13

    Abstract: Systems and methods are described for operating a hybrid computing system using cluster contraction for converting large, dense input to reduced input that can be easily mapped into a quantum processor. The reduced input represents the global structure of the problem. Techniques involve partitioning the input variables into clusters and contracting each cluster. The input variables can be partitioned using an Unweighted Pair Group Method with Arithmetic Mean algorithm. The quantum processor returns samples based on the reduced input and the samples are expanded to correspond to the original input.

    SYSTEMS AND METHODS FOR ANALOG PROCESSING OF PROBLEM GRAPHS HAVING ARBITRARY SIZE AND/OR CONNECTIVITY

    公开(公告)号:US20200167685A1

    公开(公告)日:2020-05-28

    申请号:US16778295

    申请日:2020-01-31

    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples. A controller causes a processing operation on the partial samples to generate complete samples.

    SYSTEMS AND METHODS FOR QUANTUM PROCESSOR TOPOLOGY

    公开(公告)号:US20190220771A1

    公开(公告)日:2019-07-18

    申请号:US16307382

    申请日:2017-06-07

    CPC classification number: G06N10/00 B82Y10/00 G06F15/80

    Abstract: Topologies for analog computing systems may include cells of qubits which may implement a tripartite graph and cross substantially orthogonally. Qubits may have an H-shape or an l-shape, qubits may change direction within a cell. Topologies may be comprised of two or more different sub-topologies. Qubits may be communicatively coupled to non-adjacent cells by long-range couplers. Long-range couplers may change direction within a cell. A cell may have two or more different type of long-range couplers. A cell may have shifted qubits, more than one type of inter-cell couplers, more than one type of intra-cell couplers and long-range couplers.

Patent Agency Ranking