-
公开(公告)号:US12020116B2
公开(公告)日:2024-06-25
申请号:US17054284
申请日:2019-05-06
Applicant: D-WAVE SYSTEMS INC.
Inventor: Emile M. Hoskinson , Reuble Mathew
CPC classification number: G06N10/00 , G06N3/044 , H03M1/66 , B82Y10/00 , G06N10/40 , G06N10/60 , H03K3/30 , H03K3/38
Abstract: Devices, systems, and methods that include a qubit coupled to a projective-source digital-to-analog converter (PSDAC) for projective measurement of the qubit. A change in flux state of the PSDAC from a first flux state to a second flux state generates a fast-flux step or fast-step waveform that can be applied to the qubit to perform projective measurement of the qubit. For a quantum processor that includes a set of qubits wherein each qubit is coupled to a respective PSDAC, a shared trigger line can activate each PSDAC to generate a respective fast-flux step or fast-step waveform. Synchronization devices can synchronize the fast-flux steps or fast-step waveforms, allowing for projective readout of the set of qubits.
-
公开(公告)号:US09710758B2
公开(公告)日:2017-07-18
申请号:US14691268
申请日:2015-04-20
Applicant: D-Wave Systems Inc.
Inventor: Paul I. Bunyk , Mohammad H. S. Amin , Richard G. Harris , Trevor Michael Lanting , Mark W. Johnson , Jeremy P. Hilton , Emile M. Hoskinson
CPC classification number: G06N99/002 , G06F15/82
Abstract: In a quantum processor some couplers couple a given qubit to a nearest neighbor qubit (e.g., vertically and horizontally in an ordered 2D array), other couplers couple to next-nearest neighbor qubits (e.g., diagonally in the ordered 2D array). Couplers may include half-couplers, to selectively provide communicative coupling between a given qubit and other qubits, which may or may not be nearest or even next-nearest-neighbors. Tunable couplers selective mediate communicative coupling. A control system may impose a connectivity on a quantum processor, different than an “as designed” or “as manufactured” physical connectivity. Imposition may be via a digital processor processing a working or updated working graph, to map or embed a problem graph. A set of exclude qubits may be created from a comparison of hardware and working graphs. An annealing schedule may adjust a respective normalized inductance of one or more qubits, for instance to exclude certain qubits.
-
公开(公告)号:US20240151782A1
公开(公告)日:2024-05-09
申请号:US18517174
申请日:2023-11-22
Applicant: D-WAVE SYSTEMS INC.
Inventor: Loren J. Swenson , Emile M. Hoskinson , Mark H. Volkmann , Andrew J. Berley , George E.G. Sterling , Jed D. Whittaker
IPC: G01R33/035 , G06N10/00 , H10N60/12
CPC classification number: G01R33/0354 , G06N10/00 , H10N60/12
Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line. A low-frequency current bias may be used at room temperature to identify the presence of a DC short, an open, and/or an unexpected resistance in a superconducting resonator.
-
公开(公告)号:US11879950B2
公开(公告)日:2024-01-23
申请号:US17054631
申请日:2019-05-16
Applicant: D-WAVE SYSTEMS INC.
Inventor: Loren J. Swenson , Emile M. Hoskinson , Mark H. Volkmann , Andrew J. Berkley , George E. G. Sterling , Jed D. Whittaker
IPC: G01R33/54 , G01R33/035 , G06N10/00 , H10N60/12
CPC classification number: G01R33/0354 , G06N10/00 , H10N60/12
Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line. A low-frequency current bias may be used at room temperature to identify the presence of a DC short, an open, and/or an unexpected resistance in a superconducting resonator.
-
5.
公开(公告)号:US20230143506A1
公开(公告)日:2023-05-11
申请号:US17399375
申请日:2021-08-11
Applicant: D-WAVE SYSTEMS INC.
Inventor: Mark W. Johnson , Paul I. Bunyk , Andrew J. Berkley , Richard G. Harris , Kelly T. R. Boothby , Loren J. Swenson , Emile M. Hoskinson , Christopher B. Rich , Jan E. S. Johansson
CPC classification number: H10N60/124 , G06N10/00 , H10N60/805
Abstract: Approaches useful to operation of scalable processors with ever larger numbers of logic devices (e.g., qubits) advantageously take advantage of QFPs, for example to implement shift registers, multiplexers (i.e., MUXs), de-multiplexers (i.e., DEMUXs), and permanent magnetic memories (i.e., PMMs), and the like, and/or employ XY or XYZ addressing schemes, and/or employ control lines that extend in a “braided” pattern across an array of devices. Many of these described approaches are particularly suited for implementing input to and/or output from such processors. Superconducting quantum processors comprising superconducting digital-analog converters (DACs) are provided. The DACs may use kinetic inductance to store energy via thin-film superconducting materials and/or series of Josephson junctions, and may use single-loop or multi-loop designs. Particular constructions of energy storage elements are disclosed, including meandering structures. Galvanic connections between DACs and/or with target devices are disclosed, as well as inductive connections.
-
公开(公告)号:US20210350269A1
公开(公告)日:2021-11-11
申请号:US17379172
申请日:2021-07-19
Applicant: D-WAVE SYSTEMS INC.
Inventor: Andrew Douglas King , Alexandre Fréchette , Evgeny A. Andriyash , Trevor Michael Lanting , Emile M. Hoskinson , Mohammad H. Amin
IPC: G06N10/00
Abstract: Degeneracy in analog processor (e.g., quantum processor) operation is mitigated via use of floppy qubits or domains of floppy qubits (i.e., qubit(s) for which the state can be flipped with no change in energy), which can significantly boost hardware performance on certain problems, as well as improve hardware performance for more general problem sets. Samples are drawn from an analog processor, and devices comprising the analog processor evaluated for floppiness. A normalized floppiness metric is calculated, and an offset added to advance the device in annealing. Degeneracy in a hybrid computing system that comprises a quantum processor is mitigated by determining a magnetic susceptibility of a qubit, and tuning a tunneling rate for the qubit based on a tunneling rate offset determined based on the magnetic susceptibility. Quantum annealing evolution is controlled by causing the evolution to pause for a determined pause duration.
-
公开(公告)号:US10891554B2
公开(公告)日:2021-01-12
申请号:US16258082
申请日:2019-01-25
Applicant: D-WAVE SYSTEMS INC.
Inventor: Richard G. Harris , Paul I. Bunyk , Mohammad H. S. Amin , Emile M. Hoskinson
Abstract: In a quantum processor some couplers couple a given qubit to a nearest neighbor qubit (e.g., vertically and horizontally in an ordered 2D array), other couplers couple to next-nearest neighbor qubits (e.g., diagonally in the ordered 2D array). Couplers may include half-couplers, to selectively provide communicative coupling between a given qubit and other qubits, which may or may not be nearest or even next-nearest-neighbors. Tunable couplers selective mediate communicative coupling. A control system may impose a connectivity on a quantum processor, different than an “as designed” or “as manufactured” physical connectivity. Imposition may be via a digital processor processing a working or updated working graph, to map or embed a problem graph. A set of exclude qubits may be created from a comparison of hardware and working graphs. An annealing schedule may adjust a respective normalized inductance of one or more qubits, for instance to exclude certain qubits.
-
公开(公告)号:US12204002B2
公开(公告)日:2025-01-21
申请号:US18517174
申请日:2023-11-22
Applicant: D-WAVE SYSTEMS INC.
Inventor: Loren J. Swenson , Emile M. Hoskinson , Mark H Volkmann , Andrew J. Berkley , George E. G. Sterling , Jed D. Whittaker
IPC: G01R33/00 , G01R33/035 , G06N10/00 , H10N60/12
Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line. A low-frequency current bias may be used at room temperature to identify the presence of a DC short, an open, and/or an unexpected resistance in a superconducting resonator.
-
公开(公告)号:US11494683B2
公开(公告)日:2022-11-08
申请号:US16955526
申请日:2018-12-19
Applicant: D-Wave Systems Inc.
Inventor: Mohammad H. Amin , Paul I. Bunyk , Trevor M. Lanting , Chunqing Deng , Anatoly Smirnov , Kelly T. R. Boothby , Emile M. Hoskinson , Christopher B. Rich
Abstract: Josephson junctions (JJ) may replace primary inductance of transformers to realize galvanic coupling between qubits, advantageously reducing size. A long-range symmetric coupler may include a compound JJ (CJJ) positioned at least approximately at a half-way point along the coupler to advantageously provide a higher energy of a first excited state than that of an asymmetric long-range coupler. Quantum processors may include qubits and couplers with a non-stoquastic Hamiltonian to enhance multi-qubit tunneling during annealing. Qubits may include additional shunt capacitances, e.g., to increase overall quality of a total capacitance and improve quantum coherence. A sign and/or magnitude of an effective tunneling amplitude Δeff of a qubit characterized by a double-well potential energy may advantageously be tuned. Sign-tunable electrostatic coupling of qubits may be implemented, e.g., via resonators, and LC-circuits. YY couplings may be incorporated into a quantum anneaier (e.g., quantum processor).
-
10.
公开(公告)号:US11127893B2
公开(公告)日:2021-09-21
申请号:US16098801
申请日:2017-05-03
Applicant: D-WAVE SYSTEMS INC.
Inventor: Mark W. Johnson , Paul I. Bunyk , Andrew J. Berkley , Richard G. Harris , Kelly T. R. Boothby , Loren J. Swenson , Emile M. Hoskinson , Christopher B. Rich , Jan E. S. Johansson
Abstract: Approaches useful to operation of scalable processors with ever larger numbers of logic devices (e.g., qubits) advantageously take advantage of QFPs, for example to implement shift registers, multiplexers (i.e., MUXs), de-multiplexers (i.e., DEMUXs), and permanent magnetic memories (i.e., PMMs), and the like, and/or employ XY or XYZ addressing schemes, and/or employ control lines that extend in a “braided” pattern across an array of devices. Many of these described approaches are particularly suited for implementing input to and/or output from such processors. Superconducting quantum processors comprising superconducting digital-analog converters (DACs) are provided. The DACs may use kinetic inductance to store energy via thin-film superconducting materials and/or series of Josephson junctions, and may use single-loop or multi-loop designs. Particular constructions of energy storage elements are disclosed, including meandering structures. Galvanic connections between DACs and/or with target devices are disclosed, as well as inductive connections.
-
-
-
-
-
-
-
-
-