摘要:
According to the teachings presented herein, a wireless communication apparatus compensates for timing misalignment in its received signal processing. In at least one embodiment, the apparatus estimates a set of path delays for a received signal and sets processing delays on the estimated path delays. The apparatus jointly hypothesizes combinations of fractional timing offsets for two or more paths, and computes a decision metric for each joint hypothesis that indicates the accuracy of the joint hypothesis. As non-limiting examples, the decision metric may be a signal quality metric, or a distance metric (such as between a measured net channel response and an effective net channel response reconstructed as a function of the combination of fractional timing offsets included in the joint hypothesis). The apparatus evaluates the decision metrics to identify a best estimate of timing misalignment, and correspondingly compensates coherent processing of the received signal.
摘要:
In receiving equipment such as a mobile terminal (1) for decoding received signals coded according to a CDMA method are decoded in an intermediate processor (9). In the decoding, coefficients or elements of a vector w are calculated in a unit or module (13) by an iterative method as a solution to a system of linear equations represented by the matrix equation Rw=h, where R is a matrix of known elements and h is a known vector. For terminating the iteration, a value of the signal to interference plus noise ratio SINR for the received signals is calculated in each iteration step and then this calculated value or a quantity derived therefrom is used as a stopping criterion or generally in a stopping algorithm.
摘要:
A combined processor, such as might be used in a mobile handset or hands-free communication device, provides residual echo suppression and noise reduction while eliminating the need for explicit comfort noise generation. Operating within a near-end communication device, the processor receives an echo-canceled signal that is derived from a near-end input signal, and generates an output signal for subsequent transmission to a far-end communication device by applying a noise attenuation factor to the echo-canceled signal or to an average of that signal. The processor maintains the average signal across periods of speech and non-speech. During far-end-modes of operation, where only incoming audio from the far-end is active, the processor substitutes the average signal for the echo-canceled signal, such that a far-end listener receives the natural sounding average signal without receiving the objectionable, residual echo that may be in the echo-canceled signal.
摘要:
In a satellite navigation system receiver co-located with a wireless communication system mobile terminal, periodic interference from the mobile terminal preventing bit-edge synchronization with one or more satellite signals is overcome by using Time Difference Of Arrival (TDOA) values associated with the satellite signals. Either a satellite signal free of periodic interference is chosen by inspection of the TDOA values, or the TDOA values are ranked and synchronization is attempted iteratively. Once a satellite signal is synchronized, the TDOA values are used to calculate synchronization for the remaining signals. The TDOA values may be transmitted to the mobile terminal by a satellite navigation signal information server connected to the wireless communication system, either individually or in broadcast mode to one or more cells. Alternatively, the mobile terminal may acquire the TDOA values from memory or from another data interface.
摘要:
Path delay information generated by a path searcher module of a wireless receiver is used to generate net channel coefficients for use in suppressing interference from a received signal. According to one embodiment, interference is suppressed from a signal transmitted over a communication channel including transmit and receive pulse shaping filters and a radio channel by generating net channel coefficients for the communication channel at processing delays such as G-Rake finger delays or chip equalizer tap delays. Medium channel coefficients are generated for the radio channel at estimated path delays as a function of the net channel coefficients. The net channel coefficients are regenerated at arbitrary delays as a function of the medium channel coefficients and an impairment covariance estimate is generated based at least in part on the regenerated net channel coefficients.
摘要:
Methods and apparatus are disclosed for calculating a channel response for use in received signal processing. In an exemplary embodiment, a method comprises calculating a channel response correlation matrix based on measured channel responses derived from pilot symbols in a received signal and forming a traffic data correlation matrix based on measurements of traffic symbols in the received signal. The traffic data correlation matrix, the channel response correlation matrix, and the measured channel responses are used in an minimum mean-squared error (MMSE) estimation process to calculate the channel response estimates. In one or more embodiments, the calculated channel response estimates comprise estimates of net channel response corresponding to signal processing delays in a G-RAKE receiver. An exemplary receiver circuit comprises a baseband processor configured to calculate channel response estimates according to one or more of the disclosed methods.
摘要:
A frequency domain representation of a whitening filter is made to depend on essentially one unknown, namely, a scaling factor that is based on an estimated ratio of total base station power to the power spectral density (PSD) of inter-cell interference plus noise. In turn, that scaling factor can be computed based on the modeling terms used in a parametric model of the impairment correlations for a received communication signal. Preferably, the model comprises an interference impairment term scaled by a first model fitting parameter, and a noise impairment term scaled by a second model fitting parameter. Further, the scaling factor can be computed by directly estimating total base station transmit power and the PSD of inter-cell interference plus noise. In any case, the whitening filter can be used in whitening a received communication signal in conjunction with channel equalization processing or RAKE receiver processing, for example.
摘要:
Signal quality estimation and demodulation are tailored to the received signal quality. According to one embodiment, a received signal is processed by determining a first set of combining weights based on a first impairment covariance estimate derived assuming a low signal quality environment. A second set of combining weights is determined based on a second impairment covariance estimate derived assuming a high signal quality environment. A metric is determined corresponding to the difference between symbol estimates derived from the second set of combining weights and hard symbol decisions. The received signal is demodulated based on the second set of combining weights if the metric satisfies a threshold indicating high signal quality and otherwise based on the first set of combining weights.
摘要:
Methods and apparatus are disclosed for calculating a channel response for use in received signal processing. In an exemplary embodiment, a method comprises calculating a channel response correlation matrix based on measured channel responses derived from pilot symbols in a received signal and forming a traffic data correlation matrix based on measurements of traffic symbols in the received signal. The traffic data correlation matrix, the channel response correlation matrix, and the measured channel responses are used in an minimum mean-squared error (MMSE) estimation process to calculate the channel response estimates. In one or more embodiments, the calculated channel response estimates comprise estimates of net channel response corresponding to signal processing delays in a G-RAKE receiver. An exemplary receiver circuit comprises a baseband processor configured to calculate channel response estimates according to one or more of the disclosed methods.
摘要:
The sensor network described herein uses a distributed sigma-delta converter, where each of a plurality of sensor nodes includes a sigma-delta modulator communicatively coupled to a remotely located sigma-delta processor in a control hub. Each sensor node generates a serial bit stream representative of a sensor output signal. The control hub includes a plurality of signal processors, each of which receive and digitally process the serial bit stream wirelessly transmitted by a corresponding sensor node. A controller in the control hub analyzes the digital output from each signal processor to determine one or more characteristics of the sensor network.