摘要:
A system and method of responding to a cache read error with a temporary cache directory column delete. A read command is received at a cache controller. In response to determining that data requested by said read command is stored in a specific data location in the cache, a read of the data is initiated. In response to determining the read of said data results in an error, a column delete indicator for an associativity class including a specific data location to temporarily prevent allocation within the associativity class of storage locations is set. A specific line delete command that marks the specific data location as deleted is issued. In response to the issuing of the specific line delete command, the column delete indicator for the associativity class, such that storage locations within the associativity class other than the specific data location can again be allocated to hold new data is set.
摘要:
A method, apparatus, and computer instructions are provided by the present invention to automatically recover from a failed node concurrent maintenance operation. A control logic is provided to send a first test command to processors of a new node. If the first test command is successful, a second test command is sent to all processors or to the remaining nodes if nodes are removed. If the second command is successful, system operation is resumed with the newly configured topology with either nodes added or removed. If the response is incorrect or a timeout has occurred, the control logic restores values to the current mode register and sends a third test command to check for an error. A fatal system attention is sent to a service processor or system software if an error is encountered. If no error, system operation is resumed with previously configured topology.
摘要:
The present invention, a multiprocessor chip pervasive command interface, collects different types of pervasive commands into individual queues for each command type. As permitted by various grouping rules, valid commands are grouped together into one single command and placed on a functional interchip communications bus. This grouping of commands maximizes pervasive command bandwidth while the use of the functional bus minimizes the number of interchip connections.
摘要:
A data processing system includes a plurality of processing units each having a respective point-to-point communication link with each of multiple others of the plurality of processing units but fewer than all of the plurality of processing units. Each of the plurality of processing units includes interconnect logic, coupled to each point-to-point communication link of that processing unit, that broadcasts requests received from one of the multiple others of the plurality of processing units to one or more of the plurality of processing units. The interconnect logic includes a partial response data structure including a plurality of entries each associating a partial response field with a plurality of flags respectively associated with each processing unit containing a snooper from which that processing unit will receive a partial response. The interconnect logic accumulates partial responses of processing units by reference to the partial response field to obtain an accumulated partial response, and when the plurality of flags indicate that all processing units from which partial responses are expected have returned a partial response, outputs the accumulated partial response.
摘要:
A data processing system includes a plurality of communication links and a plurality of processing units including a local master processing unit. The local master processing unit includes interconnect logic that couples the processing unit to one or more of the plurality of communication links and an originating master coupled to the interconnect logic. The originating master originates an operation by issuing a write-type request on at least one of the one or more communication links, receives from a snooper in the data processing system a destination tag identifying a route to the snooper, and, responsive to receipt of the combined response and the destination tag, initiates a data transfer including a data payload and a data tag identifying the route provided within the destination tag.
摘要:
A data processing system includes a memory system, a plurality of masters that issue requests for access to memory blocks within the memory system, a plurality of snoopers that provide partial responses to requests by the masters, and response logic that generates combined responses for the requests in response to the partial responses provided by the plurality of snoopers. The plurality masters includes a winning master that issues a request for a particular memory block, and the plurality of snoopers includes a protecting snooper that, in response to receipt of the request, provides a partial response and protects a transfer of coherency ownership of the particular memory block to the winning master until expiration of a protection window extension following receipt from the response logic of a combined response for the request.
摘要:
A cache memory logically partitions a cache array into at least two slices each having a plurality of cache lines, with a given cache line spread across two or more cache ways of contiguous bytes and a given cache way shared between the two cache slices, and if one a cache way is defective that is part of a first cache line in the first cache slice and part of a second cache line in the second cache slice, it is disabled while continuing to use at least one other cache way which is also part of the first cache line and part of the second cache line. In the illustrative embodiment the cache array is set associative and at least two different cache ways for a given cache line contain different congruence classes for that cache line. The defective cache way can be disabled by preventing an eviction mechanism from allocating any congruence class in the defective way. For example, half of the cache line can be disabled (i.e., half of the congruence classes). The cache array may be arranged with rows and columns of cache sectors (rows corresponding to the cache ways) wherein a given cache line is further spread across sectors in different rows and columns, with at least one portion of the given cache line being located in a first column having a first latency and another portion of the given cache line being located in a second column having a second latency greater than the first latency. The cache array can also output different sectors of the given cache line in successive clock cycles based on the latency of a given sector.
摘要:
A cache memory logically partitions a cache array having a single access/command port into at least two slices, and uses a first cache directory to access the first cache array slice while using a second cache directory to access the second cache array slice, but accesses from the cache directories are managed using a single cache arbiter which controls the single access/command port. In the illustrative embodiment, each cache directory has its own directory arbiter to handle conflicting internal requests, and the directory arbiters communicate with the cache arbiter. An address tag associated with a load request is transmitted from the processor core with a designated bit that associates the address tag with only one of the cache array slices whose corresponding directory determines whether the address tag matches a currently valid cache entry. The cache array may be arranged with rows and columns of cache sectors wherein a given cache line is spread across sectors in different rows and columns, with at least one portion of the given cache line being located in a first column having a first latency and another portion of the given cache line being located in a second column having a second latency greater than the first latency. The cache array outputs different sectors of the given cache line in successive clock cycles based on the latency of a given sector.
摘要:
Provided are a method, system, and program for transferring data directed to virtual memory addresses to a device memory. Indicator bits are set for ranges of device memory addresses in a device accessible over an Input/Output (I/O) bus indicating whether gathering is enabled for the device memory address ranges. Transfer operations are processed to transfer data to contiguous device memory addresses in the device. A determination is made as to whether the indicator bits for the contiguous device memory addresses indicate that gathering is enabled. A single bus I/O transaction is generated to transfer data for the contiguous device memory addresses over the I/O bus in response to determining that the indicator bits for the contiguous device memory addresses indicate that gathering is enabled.