摘要:
Provided is a roof-type charging apparatus that charges multi-target device, while transmitting a resonance power. A roof-type charging apparatus using resonance power transmission includes a source resonance unit configured to transmit resonance power including a source resonator having a generally planar loop configuration and defining a space therein; a receiving unit configured to receive the resonance power transmitted from the source resonator; and a connecting unit configured to separate the source resonator and the receiving unit by a predetermined distance.
摘要:
Provided is a battery pack that includes a resonator to receive power wirelessly. A film, for shielding from a magnetic field that may be generated due to an eddy current, may be inserted between a battery and the resonator of the battery pack.
摘要:
A power converter for transmitting a resonance power is provided that includes: an input end that receives a direct current (DC) voltage of a predetermined level; a first power converter that converts the DC voltage of a predetermined level to an alternating current (AC) signal using a first switching pulse signal having substantially the same frequency as a resonant frequency; a second power converter that converts the DC voltage of a predetermined level to an AC signal using a second switching pulse signal having an opposite phase to the first switching pulse signal; a first short circuit that reduces or eliminates an odd harmonic of the AC signal outputted from the first power converter, and provides the AC signal; and a second short circuit that reduces or eliminates an odd harmonic of the AC signal outputted from the second power converter, and provides the AC signal.
摘要:
A resonance power transmission system, and a method of controlling transmission and reception of a resonance power are provided. According to one embodiment, a method of controlling resonance power transmission in a resonance power transmitter may include: transmitting resonance power to a resonance power receiver, the resonance power having resonance frequencies which vary with respect to a plurality of time intervals; and receiving, from the resonance power receiver, information regarding the resonance frequency having the highest power transmission efficiency among the resonance frequencies used in the time intervals.
摘要:
A power converter which may be used in a resonance power transmission system and an apparatus for transmitting a resonance power are provided. According to an aspect, a power converter in a resonance power transmission system may include: an input end configured to receive a direct current (DC) voltage of a predetermined level; a first power converter configured to convert the DC voltage of a predetermined level to an alternating current (AC) signal using a first switching pulse signal having substantially the same frequency as a resonant frequency; a second power converter configured to convert the DC voltage of a predetermined level to an AC signal using a second switching pulse signal having an opposite phase to the first switching pulse signal; a first short circuit configured to reduce or eliminate an odd harmonic of the AC signal outputted from the first power converter, and to provide the AC signal where the odd harmonic is reduced or eliminated to a source resonator; and a second short circuit configured to reduce or eliminate an odd harmonic of the AC signal outputted from the second power converter, and to provide the AC signal where the odd harmonic is reduced or eliminated to the source resonator.
摘要:
Provided is a wireless recharging set. A source unit including a source resonator may transmit power wirelessly in all directions, and a device may receive the transmitted wireless power regardless of location.
摘要:
A wireless power transmitter that transmits a resonance power via a multi-band resonator and a method thereof are provided. According to an aspect, a wireless power transmitter may include: a source unit configured to generate resonance power; a power amplifying unit configured to amplify the resonance power; and a multi-band resonance unit including at least two resonators, the at least two resonators configured to transmit the amplified resonance power to target resonators using different resonance bands.
摘要:
Provided is a roof-type charging apparatus that charges multi-target device, while transmitting a resonance power. A roof-type charging apparatus using resonance power transmission includes a source resonance unit configured to transmit resonance power including a source resonator having a generally planar loop configuration and defining a space therein; a receiving unit configured to receive the resonance power transmitted from the source resonator; and a connecting unit configured to separate the source resonator and the receiving unit by a predetermined distance.
摘要:
A resonance power transmission system for controlling a supply voltage of a power converter based on power transmission efficiency is provided. According to an aspect, a resonance power transmitter configured to transmit resonance power to one or more resonance power receivers may include: a voltage controller configured to receive an input signal and to output voltage of a predetermined level; a source controller configured to control a signal level of the DC voltage based the number of resonance power receivers.
摘要:
An electronic device and method for transmitting and receiving a wireless power are provided. An electronic device for transmitting and receiving wireless power may include a resonator configured to operate, based on a plurality of operating modes of the electronic device including a power reception mode, a relay mode, and a power transmission mode, wherein: (i) in the power reception mode, the resonator is configured to receive power from a wireless power transmitter, (ii) in the relay mode, the resonator is configured to relay power received from the wireless power transmitter to a wireless power receiver, and (iii) in the power transmission mode, the resonator is configured to transmit power to the wireless power receiver; and a path controller configured to control at least one electrical pathway of electronic device based on the operating mode.