Abstract:
Systems and methods for increasing hybrid driveline efficiency are disclosed. In one example, an efficient engine operating region is defined within an engine operating domain based on an engine's brake specific fuel consumption. The systems and methods may increase an amount of time a hybrid driveline operates at more efficient operating conditions.
Abstract:
A vehicle includes an engine; a fraction battery; and a controller or a battery control system having a controller. The controller is programed to respond to a predicted duration of charge sustaining operation for a drive cycle and a speed of the vehicle. When the predicted duration is greater than a predetermined duration and the speed is less than a speed threshold, the controller increases a state of charge threshold of the traction battery associated with triggering shut offs of the engine to reduce cycling of the engine during the drive cycle.
Abstract:
Systems and methods for increasing hybrid driveline efficiency are disclosed. In one example, an efficient engine operating region is defined within an engine operating domain based on an engine's brake specific fuel consumption. The systems and methods may increase an amount of time a hybrid driveline operates at more efficient operating conditions.
Abstract:
External data from a second computer external to a vehicle is received in an in-vehicle computer comprising a processor and a memory. At least one derived datum is generated from at least some of the external data. The at least one derived datum is used to make an adjustment to engine performance.
Abstract:
A vehicle having an engine, an electric machine, a traction battery configured to supply power to the electric machine; and at least one controller is provided. The at least one controller is programmed to apply a filter to a requested engine power. The filter has a filter effect responsive to a difference between an actual and filtered driver demand such that the filter effect increases as the difference decreases to reduce rates of change in engine power output to satisfy the actual driver demand.
Abstract:
A computer in a vehicle is programmed to determine that the vehicle has entered an intersection zone; gather data related to operation of the vehicle in the intersection zone; determine that the vehicle has departed the intersection zone; and determine a current driving score based at least in part on the operation of the vehicle in the intersection zone.
Abstract:
A computer in a vehicle is configured to receive one or more data collector inputs, detect an object proximate to the vehicle based on the one or more inputs, determine a closure speed between the object and the vehicle, determine a change in speed of the object, compute an accountability factor; and determine whether to identify a potential incident based at least in part on the accountability factor and an incident value. The incident value is a function of at least one of the closure speed and a distance between the vehicle and the object. The accountability factor is based at least in part on the closure speed and the change in speed of the object.
Abstract:
Methods and systems are provided for closed-loop adjusting a laser intensity of a laser ignition device of a hybrid vehicle. The laser intensity applied over consecutive laser ignition events is decreased until a flame quality is degraded for a threshold number of cylinder combustion events. The laser intensity is then increased to improve flame quality and the closed-loop adjustment is reiterated.
Abstract:
Methods and systems are described for controlling output of a fuel cell that generates electrical power for an electric machine that propels a vehicle. In one example, a driver demand power reduction is anticipated and output of the fuel cell is adjusted before the driver demand power is reduced so that a greater amount of electric charge may be stored in an electric energy storage device.
Abstract:
A vehicle includes a controller that may be configured to, responsive to receiving a delivery request associated with a drone, periodically transmit a current location, trip route information, and acceleration data of the vehicle to guide the drone to a rendezvous location, and responsive to receiving a proximity notification associated with the drone, open a delivery opening of the vehicle.