Abstract:
A softwall containment system for a machine includes an inner wall circumscribing a bladed rotatable member of the machine and extending from a forward end to an aft end. The softwall containment system also includes an outer wall circumscribing the inner wall and extending from a forward end to an aft end. The outer wall is spaced radially outwardly from the inner wall. The outer wall extends axially between a first joint coupling the forward end of the inner wall to the forward end of the outer wall and a second joint coupling the aft end of the inner wall to the aft end of the outer wall. The softwall containment system also includes an anti-ballistic material wrap covering the outer wall, the anti-ballistic material wrap including at least one of a first extension extending forward of the first joint and a second extension extending aft of the second joint.
Abstract:
An airfoil structure is presented. The airfoil structure includes an outer casing substantially surrounding a composite core. The composite core includes a plurality of fiber bands, each of the plurality of fiber bands is placed at a predetermined position and orientation at a time, wherein the plurality of fiber bands are interwoven in an in-plane and out-of-plane orientation by interleaving each of the plurality of fiber bands placed in a plane with one or more of the plurality of fiber bands of an adjacent plane to define an interleaved structure. A method for manufacturing an airfoil structure including the composite core is also presented.
Abstract:
A propeller assembly that includes a hub having an outer radial surface and a plurality of wedge retaining members removably coupled to the hub. The plurality of wedge retaining members are spaced circumferentially about the outer radial surface such that a dovetail slot is defined between adjacent wedge retaining members. The assembly also includes at least one propeller blade including a root portion having a dovetail profile. The root portion is coupled to the hub and positioned within the dovetail slot. The plurality of wedge retaining members are configured to restrict radial movement of the root portion within the dovetail slot.
Abstract:
An apparatus and system for a marine propeller assembly are provided. A forward retention member that may be used with the marine propeller assembly includes a planar base, a drive shaft engagement end opposite the planar base, and a conic body extending therebetween along a centerline normal to the planar base. The forward retention member also includes at least one protuberance extending radially away from a surface of the conic body, the protuberance extending axially from the planar base arcuately convergent to a predetermined point between the planar base and the drive shaft engagement end.
Abstract:
An engine component for a turbine engine is provided. The engine component can include a substrate defining a surface, and an energy absorbing composite positioned on the surface of the substrate or within the substrate. The energy absorbing composite includes a shear thickening fluid distributed through a solid foamed synthetic polymer matrix.
Abstract:
A hybrid metal and composite spool includes metal rings on an outer diameter of a composite spool shell. Metal rings may include features such as annular or axial dovetail slots. Adhesive layers may be between the metal rings and composite shell which may be connected by a shrink bonded joint. The metal rings may include a single seal tooth ring with an annular radially extending seal tooth. A method for fabricating the spool may include fabricating one or more metal rings with the features therein, positioning the metal rings in place on an outer surface of an uncured composite spool shell of the spool before curing the shell, and curing the shell with the one or more metal rings positioned in place. Alternatively, rings may be heated to a temperature at least sufficient to slide rings over a cured composite shell, and allowed to cool and shrink onto shell.
Abstract:
A composite article including composite component extending heightwise from a component base to a component tip and lengthwise between spaced apart component first and second edges. Component plies having widthwise spaced apart ply first and second sides and ply edges therebetween. Component mounted on a spar which includes a shank extending heightwise into the composite component, tab at upper end of shank and substantially or fully embedded in the composite component, and tab tip. Ply edges of at least a first portion of the plies directly or indirectly contacting or pressing against the tab. Ply edges of at least a second portion of the plies may directly or indirectly contact or press against the tab tip. Ply edges of first portion may press against one or more indented or recessed surfaces in the tab. The composite article may be a composite blade or vane including a composite airfoil.
Abstract:
A composite blade assembly and a method of assembling a composite blade are provided. The composite blade assembly includes a composite blade having a radially inner root. A composite blade assembly includes a first platform and a circumferentially adjacent second platform abutting the first platform at a platform joint. Each of the first platform and the second platform includes a radially outer surface and a radially inwardly extending attachment member. The platform joint includes a slot extending through adjacent edges of the first platform and the second platform. The slot is configured to receive the radially inner root and the radially inner root is configured to be sandwiched between the attachment members. The blade assembly includes an adhesive system configured to join the radially inner root of the composite blade and the attachment members into a unitary structure, and a retaining clip configured to bias the attachment members towards each other.
Abstract:
Described are a gas turbine engine fan blade platform, related rotor assembly and gas turbine engine, as well as a method of assembling the same. The platform has a forward portion proximal to an axis of rotation, an aft portion, and a transition portion between the forward and aft portions. The forward portion has a forward interface surface facing axially forward, the aft portion has an aft interface surface facing radially outward, and the transition portion has at least one mounting feature. For the method of assembly, an aft support is installed on a fan disk and booster spool assembly. A plurality of fan blades are installed into a fan disk, followed by installing a fan platform between adjacent blades and securing the mounting features to the disk, thereby filling the annulus of the fan disk. Finally, a forward support is installed on the fan disk.
Abstract:
A gas turbine engine spinner assembly including a spinner defining at least in part an aerodynamically smooth surface, a shell defining at least in part the aerodynamically smooth surface, and circumferentially spaced apart removable aerodynamic fairings located around the shell. Fairing shanks disposed in circumferentially spaced apart axially extending slots in the shell may be attached to the aerodynamic fairings. The fairings may shield radially extending portions of the fan blades including portions of blade shanks or portions of transition regions of the blade shanks. The fairing shanks may be disposed between and monolithically formed with the fairings and fairing roots attached to the fairing shanks. The fairings may be made of an injectable thermoplastic and the shell made of metal. The fairing shanks may be setback from fairing forward tips and the fairing shanks may be setback from root forward tips of the fairing roots.