Abstract:
A system for installation in a vehicle and for controlling a remote device includes a trainable transceiver and a remote button module. The trainable transceiver base station configured to be mounted in the vehicle at a first location and the remote button module separated from the base station and configured to be mounted in the vehicle at a second location. The remote button module is configured to wirelessly transmit a command signal to the base station in response to receiving a user input at a user input device, and the base station responds to receiving the command signal by transmitting an activation signal to the remote device, wherein the activation signal is formatted to control the remote device.
Abstract:
A trainable transceiver for installation in a vehicle and for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
A system for installation in a vehicle and for controlling a remote device including a trainable transceiver, a camera, an output device, and a control circuit coupled to the trainable transceiver and the camera. The control circuit is configured to use data received from the camera to determine if the vehicle is well positioned within a garage, and the control circuit is configured to provide an indication that the vehicle is well positioned using the output device in response to determining that the vehicle is well positioned within a garage.
Abstract:
A system for controlling a remote device including a trainable transceiver, communications electronics, and a processing circuit coupled to the trainable transceiver and the communications electronics. The processing circuit is configured to cause the trainable transceiver to control a remote device in response to a signal received from a cloud computing system, wherein the signal is received from the cloud computing system using the communications electronics.
Abstract:
A system for controlling a remote device includes a first trainable transceiver, a second trainable transceiver, and a cloud computing system configured to be in communication with the first trainable transceiver and the second trainable transceiver. The cloud computing system stores a code roll, and the cloud computing system transmits a current value of the code roll to the first trainable transceiver or the second trainable transceiver upon receiving a request transmission from the first trainable transceiver or the second trainable transceiver respectively.
Abstract:
Methods and systems for modifying a carrier frequency for a trainable transmitter may include receiving a request to transmit a control signal from the trainable transmitter to a receiver. A transmission of a first control signal may be made using a trained carrier frequency and a control data. At least part of the carrier frequency may be shifted by a frequency increment. A second control signal may then be generated using the carrier frequency shifted by the frequency increment and the control data. The second control signal may then be transmitted.
Abstract:
A system is provided for allowing temporary access to a desired area. The temporary access may be for the purposes of making a delivery. The system comprises a trainable transceiver configured to transmit an activation signal to a remote device; a mobile communications device in selective communication with the trainable transceiver; and an accessory selectively securable to mobile communications device and capable of transmitting information to trainable transceiver.
Abstract:
A system for detecting broken springs in overhead doors having automatic door openers includes an automatic door opener having a motor, a sensor configured to monitor performance of the motor in the door opener, and a processor in communication with the sensor. The processor is configured to compare the motor performance with a predetermined threshold level and send an alert when motor performance exceeds the predetermined threshold level.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured based on training information to communicate with the remote device, a communications device configured to communicate with a mobile communications device, and a control circuit coupled to the transceiver circuit, and coupled to the communications device. The control circuit is configured to transmit diagnostic information related to the trainable transceiver to a mobile communications device via the communications device.
Abstract:
A system for installation in a vehicle and for controlling a remote device includes a trainable transceiver and a remote button module. The trainable transceiver base station configured to be mounted in the vehicle at a first location and the remote button module separated from the base station and configured to be mounted in the vehicle at a second location. The remote button module is configured to wirelessly transmit a command signal to the base station in response to receiving a user input at a user input device, and the base station responds to receiving the command signal by transmitting an activation signal to the remote device, wherein the activation signal is formatted to control the remote device.