Abstract:
A method of manufacturing a crystalline aluminum-iron-silicon alloy and a crystalline aluminum-iron-silicon alloy part. An aluminum-, iron-, and silicon-containing composite powder is provided that includes an amorphous phase and a first crystalline phase having a hexagonal crystal structure at ambient temperature. The composite powder is heated at a temperature in the range of 850° C. to 950° C. to transform at least a portion of the amorphous phase into the first crystalline phase and to transform the composite powder into a crystalline aluminum-iron-silicon (Al—Fe—Si) alloy. The first crystalline phase is a predominant phase in the crystalline Al—Fe—Si alloy.
Abstract:
A lithium-based battery separator includes a porous polymer membrane having opposed surfaces. A porous carbon coating is formed on one of the opposed surfaces of the porous polymer membrane. Polycations are incorporated in the porous carbon coating, in the porous polymer membrane, or in both the porous carbon coating and the porous polymer membrane.
Abstract:
In an example of a method for forming a high-strength, lightweight alloy, starting materials are provided. The starting materials include aluminum, iron, and silicon. The starting materials are ball milled to generate the high-strength, lightweight alloy of a stable AlxFeySiz phase, wherein x ranges from about 3 to about 5, y ranges from about 1.5 to about 2.2, and z is about 1.
Abstract:
Methods of making high-strength, lightweight alloy components capable of high temperature performance comprising aluminum, silicon, and iron and/or nickel are provided. A high-energy stream, such as a laser or electron beam, may be selectively directed towards a precursor material to melt a portion of the precursor material in a localized region. The molten precursor material is cooled at a rate of greater than or equal to about 1.0×105 K/second to form a solid high-strength, lightweight alloy component comprising a stable ternary cubic phase having high heat resistance and high strength. The stable ternary phase may be AlxFeySiz, where x ranges from about 4 to about 5 or about 7.2 to about 7.6, y is about 1.5 to about 2.2, and z is about 1. The stable ternary phase may also be Al6Ni3Si. Materials and components, such as automotive components, made from such methods are also provided.
Abstract:
A positive electrode includes a lithium-based active material, a binder, a conductive filler, and discrete aluminum oxide nanomaterials. The aluminum oxide nanomaterials are mixed, as an additive, throughout the positive electrode with the lithium-based active material, the binder, and the conductive filler. The positive electrode with the discrete aluminum oxide nanomaterials may be incorporated into a lithium ion battery. The aluminum oxide nanomaterials may be formed by the following method. A solution is formed by mixing an aluminum oxide precursor and an acid. A carbon material is added to the solution, thereby forming an aqueous mixture having the carbon material therein. Hydrothermal synthesis is performed using the aqueous mixture, and precursor nanostructures are grown on the carbon material. The precursor nanostructures on the carbon material are annealed so that the carbon material is removed and aluminum oxide nanomaterials are formed.
Abstract:
A positive electrode includes a sulfur-based active material, a binder, a conductive filler, and porous, one-dimensional metal oxide nanorods. The one-dimensional metal oxide nanorods are mixed, as an additive, throughout the positive electrode with the sulfur-based active material, the binder, and the conductive filler. The positive electrode with the porous, one-dimensional metal oxide nanorods may be incorporated into any sulfur-based battery.
Abstract:
In an example of a method for making a hollow carbon material, a carbon black particle is obtained. The carbon black particle has a concentric crystallite structure with an at least partially amorphous carbon core and a graphitic carbon shell surrounding the at least partially amorphous carbon core. The carbon black particle is exposed to any of a heat treatment, a chemical treatment, or an electrochemical treatment which removes the at least partially amorphous carbon core to form the hollow carbon material.
Abstract:
A method of making a negative electrode for an electrochemical cell of a secondary lithium battery. The negative electrode includes composite Li—Si alloy particles dispersed in a polymer binder. The composite Li—Si alloy particles are formed by contacting Li—Si alloy particles with a precursor solution that includes a phosphorus sulfide compound dissolved in an organic solvent to form a lithium thiophosphate solid electrolyte layer over an entire outer surface of each of the Li—Si alloy particles.
Abstract:
An aluminum-iron alloy for casting includes aluminum, iron, silicon, and niobium present in the aluminum-iron alloy in an amount according to formula (I): (Al3Fe2Si)1-x+x Nb, wherein x is from 0.25 parts by weight to 2.5 parts by weight based on 100 parts by weight of the aluminum-iron alloy. A method of forming a component including forming the aluminum-iron alloy is also described.
Abstract:
In an embodiment, a high temperature component comprises an aluminum iron alloy. The aluminum iron alloy comprises 52 to 61 atomic percent of aluminum based on the total atoms of aluminum and iron and comprises a first, B2 phase comprising FeAl and a second, triclinic phase comprising FeAl2. The aluminum iron alloy can comprise an additional element, for example, at least one of silicon or zirconium.