Abstract:
Both the reaction of hydride-forming compositions with hydrogen to form hydrides, and the decomposition of such hydrides to release hydrogen may be promoted electrochemically. These reactions may be conducted reversibly, and if performed in a suitable cell, the cell will serve as a hydrogen storage and release device.
Abstract:
In an example of a method for forming a high-strength, lightweight alloy, starting materials are provided. The starting materials include aluminum, iron, and silicon. The starting materials are ball milled to generate the high-strength, lightweight alloy of a stable AlxFeySiz phase, wherein x ranges from about 3 to about 5, y ranges from about 1.5 to about 2.2, and z is about 1.
Abstract:
A method of fabricating a curvilinear magnet includes forming at least one slot in a material billet. The slotted material billet is inserted into a mold having a curvilinear pocket. The mold is closed around the slotted material billet such that the slotted material billet conforms to the curvilinear pocket and forms a curvilinear billet. The curvilinear billet is arranged in a structure. The curvilinear billet arranged in the structure is then magnetized.
Abstract:
Interstitially modified compounds of rare earth element-containing, iron-rich compounds may be synthesized with a ThMn12 tetragonal crystal structure such that the compounds have useful permanent magnet properties. It is difficult to consolidate particles of the compounds into a bulk shape without altering the composition and magnetic properties of the metastable material. A combination of thermal analysis and crystal structure analysis of each compound may be used to establish heating and consolidation parameters for sintering of the particles into useful magnet shapes.
Abstract:
A method of making a permanent magnet and a permanent magnet. The method includes using metal injection molding to mix a magnetic material with a binder into a common feedstock and injection mold the feedstock into a predetermined magnet shape. The injection molding of the feedstock takes place in conjunction with the application of a magnetic field such that at least some of the magnetic constituents in the feedstock are aligned with the applied field. After the alignment of the magnetic constituents, the shaped part may be sintered. In one form, the magnetic constituents may be made from a neodymium-iron-boron permanent magnet precursor material, as well as one or more rare earth ingredients.
Abstract:
A three-dimensional object made of a bulk nitride, carbide, or boride-containing material may be manufactured using a powder bed fusion additive manufacturing technique. A layer of powder feed material may be distributed over a solid substrate and scanned with a high-energy laser beam to locally melt selective regions of the layer and form a pool of molten feed material. The pool of molten feed material may be exposed to gaseous nitrogen, carbon, or boron to respectively dissolve nitride, carbide, or boride ions into the pool of molten feed material to produce a molten nitrogen, carbon, or boron-containing solution. The molten nitrogen, carbon, or boron-containing solution may cool and solidify into a solid layer of fused nitride, carbide, or boride-containing material. In one form, the three-dimensional object may comprise a permanent magnet made up of a plurality of solid layers of fused iron nitride material having a magnetic Fe16N2 phase.
Abstract:
A method for fabricating a non-planar magnet includes extruding a precursor material including neodymium iron boron crystalline grains into an original anisotropic neodymium iron boron permanent magnet having an original shape, wherein the original anisotropic neodymium iron boron permanent magnet has at least about 90 percent neodymium iron boron magnetic material by volume. The original anisotropic neodymium iron boron permanent magnet is heated to a deformation temperature. The original anisotropic neodymium iron boron permanent magnet is deformed into a reshaped anisotropic neodymium iron boron permanent magnet having a second shape substantially different from the original shape using heated tooling to apply a deformation load to the original anisotropic neodymium iron boron permanent magnet. The original anisotropic neodymium iron boron permanent magnet and the reshaped anisotropic neodymium iron boron permanent magnet each have respective magnetic moments substantially aligned with a respective local surface normal corresponding to the respective magnetic moment.
Abstract:
Interstitially modified compounds of rare earth element-containing, iron-rich compounds may be synthesized with a ThMn12 tetragonal crystal structure such that the compounds have useful permanent magnet properties. It is difficult to consolidate particles of the compounds into a bulk shape without altering the composition and magnetic properties of the metastable material. A combination of thermal analysis and crystal structure analysis of each compound may be used to establish heating and consolidation parameters for sintering of the particles into useful magnet shapes.
Abstract:
An electric motor is provided for use in an electromechanical transmission that utilizes automatic transmission fluid. The electric motor includes a stator and a rotor. The rotor includes a plurality of permanent magnets can include magnetic particles coated with hydrogen impermeable material. According to an alternative embodiment, the entire permanent magnet or the rotor itself can be coated with hydrogen impermeable material. According to a further alternative embodiment, the permanent magnet particles can be secured by a binder that includes a hydrogen storage compound that prevents hydrogen from affecting magnetic properties of the permanent magnet.
Abstract:
According to aspects of the present disclosure, a ternary alloy includes a dual-phase microstructure including a first phase and a second phase. The first phase defines a hexagonal close-packed structure with a stoichiometric ratio of Al4Fe1.7Si. The second phase defines a face-centered cubic structure with a stoichiometric ratio of Al3Fe2Si. The dual-phase microstructure is stable above about 800° C., and the dual-phase microstructure has a first-phase abundance greater than about 50 parts by weight and a second-phase abundance less than about 50 parts by weight based on 100 parts by weight of the ternary alloy.