摘要:
A fluid ejection device, a method of cleaning the device, and a method of operating the device are provided. The device includes a substrate having a first surface and a second surface located opposite the first surface. A nozzle plate is formed over the first surface of the substrate and has a nozzle through which fluid is ejected. A drop forming mechanism is situated at the periphery of the nozzle. A fluid chamber is in fluid communication with the nozzle and has a first wall and a second wall. The first wall and the second wall are positioned at an angle other than 90° relative to each other. A fluid delivery channel is formed in the substrate and extends from the second surface of the substrate to the fluid chamber. The fluid delivery channel is in fluid communication with the fluid chamber.
摘要:
A method of etching a substrate and an article(s) formed using the method are provided. The method includes providing a substrate; coating a region of the substrate with a temporary material having properties that enable the temporary material to remain substantially intact during subsequent processing and enable the temporary material to be removed by a subsequent process that allows the substrate to remain substantially unaltered; removing a portion of the substrate to form a feature, at least some of the removed portion of the substrate overlapping at least a portion of the coated region of the substrate while allowing the temporary material substantially intact; and removing the temporary material while allowing the substrate to remain substantially unaltered.
摘要:
A drop deflector apparatus for a continuous drop emission system that deposits a liquid pattern on a receiver according to liquid pattern data comprising a plurality of drop nozzles formed along a nozzle array axis and emitting a plurality of continuous streams of a liquid that breaks up into a plurality of streams of drops having nominal flight paths that are substantially parallel and substantially within a nominal flight plane is disclosed. An airflow plenum having an evacuation end connected to a negative pressure source and an impingement end having an opening located adjacent the nominal flight plane into which ambient air is drawn for the purpose of deflecting drops in an air deflection direction perpendicular to the nominal flight plane is provided. The opening is bounded by upstream, downstream, first and second walls wherein the upstream and downstream wall ends are spaced away from the nominal flight plane in the air deflection direction by a larger amount than are the first and second side wall edges. An airflow plenum having through slots for the passage of drops is also disclosed. Such a plenum design increases the amount of drop deflection achieved for a given maximum deflection air velocity and provides a reduction in the affect of perturbing air currents that may be present around the nominal flight paths. Drop synchronization apparatus is disclosed to break up continuous streams into drops of large and small volumes according to liquid pattern data, the large and small drops being differently deflected by the air flow in the airflow plenum. A plurality of path selection elements is disclosed for directing drops along different paths according to liquid pattern data, wherein drops following different paths are differently deflected by the air flow in the airflow plenum. A method of printing using the disclosed apparatus is also disclosed.
摘要:
An emission device for ejecting a liquid drop is provided. The device includes a body. Portions of the body define an ink delivery channel and other portions of the body define a nozzle bore. The nozzle bore is in fluid communication with the ink delivery channel. An obstruction having an imperforate surface is positioned in the ink delivery channel. The emission device can be operated in a continuous mode and/or a drop on demand mode.
摘要:
A continuous ink jet printhead and method are provided. The printhead includes an ink delivery channel. A plurality of nozzle bores are in fluid communication with the ink delivery channel. An individual obstruction is associated with each nozzle bore. Each individual obstruction is positioned in the ink delivery channel such that each obstruction creates a lateral flow pattern in ink continuously flowing through each of the plurality of nozzle bores as measured from a plane perpendicular to the plurality of nozzle bores.
摘要:
An apparatus for printing an image is provided. The apparatus includes a droplet forming mechanism operable in a first state to form droplets having a first volume travelling along a path and in a second state to form droplets having a plurality of other volumes travelling along the same path. A droplet deflector system applies force to the droplets travelling along the path. The force is applied in a direction such that the droplets having the first volume diverge from the path while the droplets having the plurality of other volumes remain travelling substantially along the path or diverge slightly and begin travelling along a gutter path.
摘要:
A printer having mechanically-assisted ink droplet separation and method of using same, for separating an ink meniscus from an ink nozzle orifice while clearing-away particulate matter from about the orifice. In a preferred embodiment of the invention, a heater surrounds an orifice formed by the nozzle, the orifice having an ink meniscus residing therein. As the heater heats the ink meniscus, surface tension of the ink meniscus decreases, thereby causing the ink meniscus to extend outwardly from the orifice to define an extended ink meniscus. A cutter, which is disposed near the orifice, includes a plate member disposed opposite an outside surface of the nozzle so as to define a passage between the outside surface and the plate member. The plate member has an opening aligned with the orifice and in communication with the passage. A gas pressure regulator in communication with the passage supplies pressurized gas into the passage, which gas flows along the passage an through the opening. As the gas flows through the opening, it impinges the extended ink meniscus to separate the extended ink meniscus from the orifice. As the extended ink meniscus separates from the orifice, it forms an ink droplet that travels to a receiver medium, so that an ink spot is placed onto the receiver medium. Moreover, as the gas flows through the opening, the gas clears-away particulate matter from about the orifice.
摘要:
A continuous inkjet printing apparatus is provided. The apparatus includes a printhead having a two dimensional nozzle array. The two dimensional nozzle array includes a first nozzle row being disposed in a first direction and a second nozzle row being disposed displaced and offset relative to the first nozzle row. A drop forming mechanism is positioned relative to the nozzle rows and is operable in a first state to form drops having a first volume travelling along a path and in a second state to form drops having a second volume travelling along the same path. A system applies force to the drops travelling along the path with the force being applied in a direction such that the drops having the first volume diverge from the path.
摘要:
There is provided by this invention a unique printing system that utilizes a notch deflector in the ink delivery channel of a continuous ink jet printing system to control the angle of deflection ink droplets in a print and non-print direction. The width and depth of the notch in the ink delivery channel can be varied to produce different angles of deflection of the ink droplets for a given velocity of ink through the channel. Also, for any predetermined width and depth of the notch in the ink delivery channel, the deflection angle of the droplets will vary with varying velocities of ink flow. Control circuits are connected to the notch deflector to adjust the depth of the deflector for different angles of deflection.
摘要:
For an inkjet printhead (10) with integral compensation for misdirection of ink drops (37) ejected through at least one nozzle (24) of the printhead (10), a system and method of modifying the nozzle cavity space (32a) so as to compensate for the effects of defects in the printhead (10) by altering the direction the ejected ink drops (37). The inkjet printhead (10) comprises at least one reservoir (28) integrated within the membrane (30). The inkjet printhead (10) also comprises a channel (38) extending from the reservoir (28) and terminating in the nozzle cavity (32). A hardening substance (40) within the reservoir (28) and channel (38) is a plastic material having a high thermal expansion coefficient. An internal heater (48) within the reservoir (28) and adjacent the hardening substance (40) is adapted to cause the plastic material (40) to flow in order to form a protrusion (44) of plastic material (40) within the nozzle cavity space (32a). Alternatively, the plastic material (40) can be recessed within the channel (38). Thus, the hardening substance (40) is adapted to internally alter the nozzle cavity space (32a) and cause ink (34) ejected from the nozzle opening (26) to be deflected with regard to a desired amount of compensation.