PROCESSING COMPUTATIONAL GRAPHS
    44.
    发明申请

    公开(公告)号:US20180247197A1

    公开(公告)日:2018-08-30

    申请号:US15965742

    申请日:2018-04-27

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for receiving a request from a client to process a computational graph; obtaining data representing the computational graph, the computational graph comprising a plurality of nodes and directed edges, wherein each node represents a respective operation, wherein each directed edge connects a respective first node to a respective second node that represents an operation that receives, as input, an output of an operation represented by the respective first node; identifying a plurality of available devices for performing the requested operation; partitioning the computational graph into a plurality of subgraphs, each subgraph comprising one or more nodes in the computational graph; and assigning, for each subgraph, the operations represented by the one or more nodes in the subgraph to a respective available device in the plurality of available devices for operation.

    CLASSIFYING DATA OBJECTS
    46.
    发明公开

    公开(公告)号:US20240220527A1

    公开(公告)日:2024-07-04

    申请号:US18606458

    申请日:2024-03-15

    Applicant: Google LLC

    CPC classification number: G06F16/35 G06F16/50

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying data objects. One of the methods includes obtaining data that associates each term in a vocabulary of terms with a respective high-dimensional representation of the term; obtaining classification data for a data object, wherein the classification data includes a respective score for each of a plurality of categories, and wherein each of the categories is associated with a respective category label; computing an aggregate high-dimensional representation for the data object from high-dimensional representations for the category labels associated with the categories and the respective scores; identifying a first term in the vocabulary of terms having a high-dimensional representation that is closest to the aggregate high-dimensional representation; and selecting the first term as a category label for the data object.

    TRAINING DISTILLED MACHINE LEARNING MODELS
    47.
    发明公开

    公开(公告)号:US20240144109A1

    公开(公告)日:2024-05-02

    申请号:US18399358

    申请日:2023-12-28

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a distilled machine learning model. One of the methods includes training a cumbersome machine learning model, wherein the cumbersome machine learning model is configured to receive an input and generate a respective score for each of a plurality of classes; and training a distilled machine learning model on a plurality of training inputs, wherein the distilled machine learning model is also configured to receive inputs and generate scores for the plurality of classes, comprising: processing each training input using the cumbersome machine learning model to generate a cumbersome target soft output for the training input; and training the distilled machine learning model to, for each of the training inputs, generate a soft output that matches the cumbersome target soft output for the training input.

    Training distilled machine learning models

    公开(公告)号:US11900232B2

    公开(公告)日:2024-02-13

    申请号:US17863733

    申请日:2022-07-13

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a distilled machine learning model. One of the methods includes training a cumbersome machine learning model, wherein the cumbersome machine learning model is configured to receive an input and generate a respective score for each of a plurality of classes; and training a distilled machine learning model on a plurality of training inputs, wherein the distilled machine learning model is also configured to receive inputs and generate scores for the plurality of classes, comprising: processing each training input using the cumbersome machine learning model to generate a cumbersome target soft output for the training input; and training the distilled machine learning model to, for each of the training inputs, generate a soft output that matches the cumbersome target soft output for the training input.

    Method And System For Deleting Obsolete Files From A File System

    公开(公告)号:US20230409527A1

    公开(公告)日:2023-12-21

    申请号:US18239475

    申请日:2023-08-29

    Applicant: Google LLC

    Abstract: A method for deleting obsolete files from a file system is provided. The method includes receiving a request to delete a reference to a first target file of a plurality of target files stored in a file system, the first target file having a first target file name. A first reference file whose file name includes the first target file name is identified. The first reference file is deleted from the file system. The method further includes determining whether the file system includes at least one reference file, distinct from the first reference file, whose file name includes the first target file name. In accordance with a determination that the file system does not include the at least one reference file, the first target file is deleted from the file system.

Patent Agency Ranking