Abstract:
The present invention relates, in part, to the discovery that the presence of impurities in a reactor for dehydrochlorinating HCFC-244bb to HFO-1234yf results in a reduced conversion rate and/or a selectivity changeover from HFO-1234yf to HCFO-1233xf. By substantially removing such impurities, it is shown that the conversion rate may be improved and selectivity to HFO-1234yf via dehydrochlorination of HCFC-244bb is also improved.
Abstract:
The invention relates to a process to prepare tetrahalopropenes, such as 2-chloro-3,3,3-trifluoropropene (1233xf). The process comprises atomizing a feed material, such as 1,1,2,3-tetrachloropropene (1230xa) and the like, and mixing it with superheated HF to form a vaporized composition of feed material and HF with substantially instantaneous contact with a vapor phase fluorination catalyst. The invention extends catalyst life and forestalls catalyst deactivation.
Abstract:
The invention relates to a separation process whereby 2-chloro-3,3,3-trifluoropropene (1233xf) is separated from a mixture containing other fluorinated organics and high boiling materials such as dimers using azeotropes of HF formed by adding appropriate amounts to the mixture which facilitate separation by, e.g. distillation.
Abstract:
The invention relates to a process to produce HCFC-244bb from HCFO-1233xf wherein, in one embodiment, co-feed species HFC-245cb is added to the reaction at a pressure of at least about 100 psig; and in another embodiment it is added to maintain a mole ratio of HFC-245cb to HCFO-1233xf of between about 0.005:1 to about 1:1. The HFC-245cb may be added as recycled by-product of the reaction and/or added as fresh feed. The HFC-245cb provides elevated pressures to the reaction thereby facilitating reactor operation, mixing and HCFC-244bb product removal. Other co-feed species are also disclosed.
Abstract:
The invention relates to a process to produce HCFC-244bb from HCFO-1233xf wherein, in one embodiment, one or more co-feed species having a normal boiling point of between about −80° C. to about 0° C., such as HFC-245cb, is added to the reaction at a pressure of at least about 100 psig; and in another embodiment it is added to maintain a mole ratio of HFC-245cb to HCFO-1233xf of between about 0.005:1 to about 1:1. The HFC-245cb may be added as recycled by-product of the reaction and/or added as fresh feed. The HFC-245cb provides elevated pressures to the reaction thereby facilitating reactor operation, mixing and HCFC-244bb product removal. Other co-feed species are also disclosed.
Abstract:
Provided are azeotropic or azeotrope-like mixtures of 1,3,3,3-tetrachloroprop-1-ene (HCO-1230zd) and hydrogen fluoride. Such compositions are useful as a feed stock in the production of HFC245fa and HCFO1233zd.
Abstract:
Provided are methods for forming azeotropic or azeotrope-like mixtures of 1,1,1,3,3-pentachloro-propane (240fa) and hydrogen fluoride. Such compositions are useful as an intermediate in the production of HFC-245fa and HCFO-1233zd.
Abstract:
Disclosed is a process in which the fluorination of an organic reactant comprising 1,1,1,3,3-pentachloropropane (240fa) with anhydrous HF is conducted in the presence of an effective amount of a phase-transfer catalyst which facilitates the reaction between these incompatible reaction components to produce 1-chloro-3,3,3-trifluoro-propene (1233zd). Other organic reactant materials include 1,1,3,3-tetrachloropropene (HCO-1230za), 1,3,3,3-tetrachloropropene (HCO-1230zd), and various mixtures with or without 240fa.
Abstract:
Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF═CH2 (1234yf). In certain preferred embodiments the processes comprise first exposing a compound of Formula (IA) C(X)2═CClC(X)3 (IA) where each X is independently F, Cl or H, preferably CCl2═CClCH2Cl, to one or more sets of reaction conditions, but preferably a substantially single set of reaction conditions, effective to produce at least one chlorofluoropropane, preferably in accordance with Formula (IB): CF3CClX′C(X′)3 Formula (IB) where each X′ is independently F, Cl or H, and then exposing the compound of Formula (IB) to one or more sets of reaction conditions, but preferably a substantially single set of reaction conditions, effective to produce a compound of Formula (II) CF3CF═CHZ (II) where Z is H, F, Cl, I or Br.
Abstract:
Disclosed is a process in which the fluorination of an organic reactant comprising 1,1,1,3,3-pentachloropropane (240fa) with anhydrous HF is conducted in the presence of an effective amount of a phase-transfer catalyst which facilitates the reaction between these incompatible reaction components to produce 1-chloro-3,3,3-trifluoro-propene (1233zd). Other organic reactant materials include 1,1,3,3-tetrachloropropene (HCO-1230za), 1,3,3,3-tetrachloropropene (HCO-1230zd), and various mixtures with or without 240fa.