Abstract:
The examples include methods and apparatuses to control power adjustments. Controlling power adjustments can include receiving, from the sensor, a measurement of the power, comparing the measurement of the power to a pre-defined threshold, responsive to determining that the measurement is outside the scope of the threshold, calculating an adjustment to the consumption of the power by a load, and providing the adjustment to a power supply of the load to adjust the power consumed by the power supply.
Abstract:
An example apparatus includes a windowing component. The windowing component may set a first voltage level as an upper bound for a voltage window and set a second voltage level as a lower bound for the voltage window. The windowing component may modulate an input signal to have a maximum magnitude less than the upper bound for the voltage window and a minimum magnitude greater than the lower bound for the voltage window.
Abstract:
Examples herein relate to a power supply system for a server. The system comprises a primary source, a power interface and a direct current (DC) energy supply chargeable by the primary source through the power interface. The primary source to power the server through the power interface and in the event of failure of the primary source, the DC energy supply powers the server through the power interface. The DC energy supply is located inside the server on a cool side of the server.
Abstract:
Example implementations relate to determining computing device information. In some examples, a controller may comprise a processing resource and a memory resource storing machine-readable instructions to request a handshake signal from a power supply of a computing device, receive a response signal from the power supply that includes modified power factor correction characteristics in response to the handshake signal request, and determine, based on the modified power factor correction characteristics, information about the computing device.
Abstract:
Example implementations relate to a variable soft start device. For example, in an implementation, the variable soft start device may set the capacitance of a variable capacitance circuit connected to a soft start pin of the electronic fuse. The variable soft start device may read a power-good signal from the electronic fuse and determine the capacitance to set according to the power-good signal.
Abstract:
An example device in accordance with an aspect of the present disclosure includes a first converter to selectively convert a first input signal to a first output signal, and a second converter to selectively convert a second input signal to a second output signal. A controller is to control switches of the first and second converters based on the input signals and output signals, and based on operating the first and second converters exclusively with respect to each other such that a total of first and second duty cycles does not exceed one.
Abstract:
Examples herein disclose determining an interval to limit an inrush of current to charge a capacitor. The interval is based on a peak input voltage without exceeding a current limitation. The examples connect and disconnect a switch to charge the capacitor in accordance with the interval.
Abstract:
A method, system, and device for using an interface controller to validate and authenticate controller code for a commodity device to be included within a computer system (e.g., a power supply) are provided. In one example, a commodity device controller includes dynamic memory for control software (e.g., control code to control operation of the commodity device) that may be validated (and/or updated) using an interface controller. The interface controller may perform this update/validation at startup (or run-time) to ensure secure control over aspects of the computer device including the commodity device control code. If a security risk is detected it may be mitigated in various ways, including disabling of the commodity device. Control code provided by third-parties (e.g., supplier of commodity device) may be validated and secured using disclosed techniques.
Abstract:
A power supply system includes a plurality of power supplies coupled to a common power bus. Each of the plurality of power supplies adjusts an output voltage set-point within a droop window in response to an excursion sensed voltage on the common power bus reflecting the current load on the power supply system. In response to a transient in the sensed voltage being above or below the droop window, each power supply may shift its droop window up or down. If the droop window of each power supply is at a maximum or minimum value within a voltage regulation window, each power supply may respond to a transient in the sensed voltage by compressing the droop window.
Abstract:
Examples described herein relate to a power management system. The power management system may include an input power filter coupled between a common power bus having a first voltage level and a load. The input power filter may include a variable impedance circuit coupled to an input capacitor. Further, the power management system may include a bus voltage controller coupled to the input power filter to detect a transient event causing a surge in a load current drawn by the load and to alter an impedance of the variable impedance circuit to limit an input current flowing via the variable impedance circuit, thereby maintaining voltage on the common power bus within a predefined range from the first voltage level.