摘要:
To suppress concentration of channel quality information requests and reports in a case of discontinuously transmitting reference signals at specific resources in a time domain, and thereby preventing degradation in throughput. A transmission apparatus (eNB) transmits an instruction of CSI request distributed for each reception apparatus in a subframe concurrently with or earlier than a reference signal CSI-RS to each of reception apparatuses (UE1, UE2). Each of the reception apparatuses (UE1, UE2) detects the CSI request from the transmission apparatus and calculates CSI from a channel estimation value of CSI-RS received thereafter. Then, the reception apparatus identifies CSI report subframe of the own apparatus from CSI report interval information of a given time interval notified in advance, the subframe in which the CSI request is detected and transmission timing of CSI-RS, and transmits a feedback signal including CSI report value by using PUSCH at the timing of the CSI report subframe.
摘要:
Provided is a wireless communication terminal which, when SRSs are simultaneously transmitted between CCs and between antenna ports, avoids increasing the effect of bit rounding errors of D/A converters when the number of antenna ports set for SRS transmission differs between CCs. This device comprises a transmission power calculation unit (107) which calculates the transmission power of a plurality of UL channels of a plurality of CCs and a plurality of antenna ports. A power scaling detection unit (108) detects whether or not the total transmission power of the UL channels exceeds the maximum transmission power specific to a UE. When power scaling is generated, a power scaling control unit (109) uses antenna port setting information set for SRS transmission between CCs to perform power scaling in such a way that all scaling weights are uniform between CCs, or between CCs and between antenna ports.
摘要:
A radio communication apparatus receives control information on one or more control channel elements (CCEs) with consecutive CCE number(s). The radio communication apparatus first-spreads a response signal with a sequence defined by a cyclic shift value that is determined among a plurality of cyclic shift values from an index of physical uplink control channel (PUCCH), which is associated with a first CCE number of the one or more CCEs, and second-spreads the first-spread response signal with an orthogonal sequence that is determined among a plurality of orthogonal sequences from the index. One of cyclic shift values used for an orthogonal sequence is determined from an index of the PUCCH, which is associated with an odd CCE number, and another one of the cyclic shift values used for the same orthogonal sequence is determined from an index of the PUCCH, which is associated with an even CCE number.
摘要:
To improve the channel estimation accuracy of “DL grant” that instructs data allocation of a downlink of R-PDCCH. A wireless communication apparatus according to an aspect of the invention includes a receiver that is configured to receive a control signal, and a blind decoder that is configured to perform a blind decoding of a plurality of adjacent physical, resource blocks (PRBs) in which the same preceding is used in a unit of an RB group (RBG) that is composed of the plurality of PRBs, and to detect a resource area to which a control signal for the wireless communication apparatus that is included in the control signal is allocated.
摘要:
A wireless communication apparatus capable of minimizing the degradation in separation characteristic of a code multiplexed response signal. In this apparatus, a control part (209) controls both a AC sequence to be used in a primary spreading in a spreading part (214) and a Walsh sequence to be used in a secondary spreading in a spreading part (217) so as to allow a very small circular shift interval of the ZC sequence to absorb the interference components remaining in the response signal; the spreading part (214) uses the ZC sequence set by the control part (209) to primary spread the response signal; and the spreading part (217) uses the Walsh sequence set by the control part (209) to secondary spread the response signal to which CP has been added.
摘要:
A wireless communication apparatus capable of minimizing the degradation of the separation characteristic of response signals to be code-multiplexed. In the apparatus, a control part (209) controls both a ZC sequence to be used for the primary spread in a spreading part (214) and a Walsh sequence to be used for the secondary spread in a spreading part (217) according to the associations between sequences and CCEs established in accordance with the probability of using response signal physical-resources corresponding to CCE numbers. The spreading part (214) performs the primary spread of the response signal by use of the ZC sequence established by the control part (209). The spreading part (217) performs the secondary spread of the response signal, to which CP has been added, by use of the Walsh sequence established by the control part (209).
摘要:
A wireless communication apparatus capable of minimizing the degradation in separation characteristic of a code multiplexed response signal. In this apparatus, a control part (209) controls both a AC sequence to be used in a primary spreading in a spreading part (214) and a Walsh sequence to be used in a secondary spreading in a spreading part (217) so as to allow a very small circular shift interval of the ZC sequence to absorb the interference components remaining in the response signal; the spreading part (214) uses the ZC sequence set by the control part (209) to primary spread the response signal; and the spreading part (217) uses the Walsh sequence set by the control part (209) to secondary spread the response signal to which CP has been added.
摘要:
A wireless communication apparatus capable of minimizing the degradation of the separation characteristic of response signals to be code-multiplexed. In the apparatus, a control part (209) controls both a ZC sequence to be used for the primary spread in a spreading part (214) and a Walsh sequence to be used for the secondary spread in a spreading part (217) according to the associations between sequences and CCEs established in accordance with the probability of using response signal physical-resources corresponding to CCE numbers. The spreading part (214) performs the primary spread of the response signal by use of the ZC sequence established by the control part (209). The spreading part (217) performs the secondary spread of the response signal, to which CP has been added, by use of the Walsh sequence established by the control part (209).
摘要:
In a case where a second reference signal for a second communication system is transmitted in addition to a first reference signal for a first communication system, resources that affect a reception apparatus compatible only with the first communication system can be minimized, and the throughput can be prevented from being deteriorated. As resources for a reference signal CSI-RS, DVRB resources in which a resource unit defined in a frequency-time domain is divided in a time direction and distributedly allocated at predetermined frequency intervals are used and CSI-RS is allocated in a resource ID of a part of DVRB resources and transmitted when a reference signal 4RS for LTE is transmitted to a reception apparatus in addition to transmitting CSI-RS for LTE-A. The reception apparatus receives CSI-RS allocated in DVRM resources on the basis of DVRB setting information for CSI-RS, measures channel quality such as CQI, PMI or RI by using CSI-RS, and transmits and reports feedback information containing channel quality information to a transmission apparatus.
摘要:
Disclosed are an encoding ratio setting method and a radio communication device which can avoid encoding of control information at an encoding ratio lower than necessary and suppress lowering of the transmission efficiency of the control information. In the device, an encoding ratio setting unit (122) sets the encoding ratio R′control of the control information which is time-multiplexed with user data, according to the encoding ratio Rdata of the user data, ΔPUSCHoffset as the PUSCH offset of each control information, and ΔRANKoffset as the rank offset based on the rank value of the data channel using Expression (1). Where ┌x┐ is an integer not greater than x, and max(x,y) is the greater one among X and Y.