Abstract:
Embodiments of apparatuses, articles, methods, and systems for secure vault service for software components within an execution environment are generally described herein. An embodiment includes the ability for a Virtual Machine Monitor, Operating System Monitor, or other underlying platform capability to restrict memory regions for access only by specifically authenticated, authorized and verified software components, even when part of an otherwise compromised operating system environment. The underlying platform to lock and unlock secrets on behalf of the authenticated/authorized/verified software component provided in protected memory regions only accessible to the authenticated/authorized/verified software component. Other embodiments may be described and claimed.
Abstract:
Both end-to-end security and traffic visibility may be achieved by a system using a controller that derives a cryptographic key that is different for each client based on a derivation key and a client identifier that is conveyed in each data packet. The controller distributes the derivation key to information technology monitoring devices and a server to provide traffic visibility. For large key sizes, the key may be derived using a derivation formula as follows: client_key_MSB=AES128(base_key_1,client_ID), (1) client_key_LSB=AES128(base_key_2,client_ID+pad),and (2) client_key=client_key_MSB∥client_key_LSB, where (1) and (2) are executed in parallel. The client key and a client identifier may be used so that end-to-end security may be achieved.
Abstract:
Technologies for execute only transactional memory include a computing device with a processor and a memory. The processor includes an instruction translation lookaside buffer (iTLB) and a data translation lookaside buffer (dTLB). In response to a page miss, the processor determines whether a page physical address is within an execute only transactional (XOT) range of the memory. If within the XOT range, the processor may populate the iTLB with the page physical address and prevent the dTLB from being populated with the page physical address. In response to an asynchronous change of control flow such as an interrupt, the processor determines whether a last iTLB translation is within the XOT range. If within the XOT range, the processor clears or otherwise secures the processor register state. The processor ensures that an XOT range starts execution at an authorized entry point. Other embodiments are described and claimed.
Abstract:
Systems and techniques for a System-on-a-Chip (SoC) security plugin are described herein. A component message may be received at an interconnect endpoint from an SoC component. The interconnect endpoint may pass the component message to a security component via a security interlink. The security component may secure the component message, using a cryptographic engine, to create a secured message. The secured message is delivered back to the interconnect endpoint via the security interlink and transmitted across the interconnect by the interconnect endpoint.
Abstract:
Memory scanning methods and apparatus are disclosed. An example apparatus includes an address identifier to, when an entry of a paging structure has been accessed, determine a first address corresponding to a page of physical memory when the entry of the paging structure maps to the page of the physical memory; and a scanner to: scan a threshold amount of memory beginning at a physical memory address corresponding to the first address; and determine whether the threshold amount of memory includes a pattern indicative of malware.
Abstract:
Technologies for execute only transactional memory include a computing device with a processor and a memory. The processor includes an instruction translation lookaside buffer (iTLB) and a data translation lookaside buffer (dTLB). In response to a page miss, the processor determines whether a page physical address is within an execute only transactional (XOT) range of the memory. If within the XOT range, the processor may populate the iTLB with the page physical address and prevent the dTLB from being populated with the page physical address. In response to an asynchronous change of control flow such as an interrupt, the processor determines whether a last iTLB translation is within the XOT range. If within the XOT range, the processor clears or otherwise secures the processor register state. The processor ensures that an XOT range starts execution at an authorized entry point. Other embodiments are described and claimed.
Abstract:
Encryption interface technologies are described. A processor can include a system agent, an encryption interface, and a memory controller. The system agent can communicate data with a hardware functional block. The encryption interface can be coupled between the system agent and a memory controller. The encryption interface can receive a plaintext request from the system agent, encrypt the plaintext request to obtain an encrypted request, and communicate the encrypted request to the memory controller. The memory controller can communicate the encrypted request to a main memory of the computing device.
Abstract:
Memory encryption engine (MEE) integration technologies are described. A MEE system may include a MEE interface and a MEE core. The MEE interface may receive a data from an arbiter, where the data is selected by the arbiter from data at memory link queues. The MEE interface may adjust a timing rate to send the data to match a timing of a MEE core. The MEE core may be coupled to the MEE interface and may receive the data from the MEE interface.
Abstract:
A processing or memory device may include a first encryption pipeline to encrypt and decrypt data with a first encryption mode and a second encryption pipeline to encrypt and decrypt data with a second encryption mode, wherein the first encryption pipeline and the second encryption pipeline share a single, shared pipeline for a majority of encryption and decryption operations performed by the first encryption pipeline and by the second encryption pipeline. A controller (and/or other logic) may direct selection of encrypted (or decrypted) data from the first and second encryption pipelines responsive to a region of memory to which a physical address of a memory request is directed. The result of the selection may result in bypassing encryption/decryption or encrypting/decrypting the data according to the first encryption mode or the second encryption mode. More than two encryption modes are envisioned.
Abstract:
A processing or memory device may include a first encryption pipeline to encrypt and decrypt data with a first encryption mode and a second encryption pipeline to encrypt and decrypt data with a second encryption mode, wherein the first encryption pipeline and the second encryption pipeline share a single, shared pipeline for a majority of encryption and decryption operations performed by the first encryption pipeline and by the second encryption pipeline. A controller (and/or other logic) may direct selection of encrypted (or decrypted) data from the first and second encryption pipelines responsive to a region of memory to which a physical address of a memory request is directed. The result of the selection may result in bypassing encryption/decryption or encrypting/decrypting the data according to the first encryption mode or the second encryption mode. More than two encryption modes are envisioned.