Abstract:
Technologies for detecting a physical assault against a user include one or more clothing sensor modules coupled to a garment of the user. Each clothing sensor module is configured to produce sensor data indicative of the removal of the garment from the user and determine whether a physical assault is presently occurring against the user using an assault detection model with the sensor data as an input to the assault detection model. In response to a determination of the physical assault against the user, the clothing sensor module is configured to alert a trust party.
Abstract:
Technology for virtual reality device for avoiding collisions during a virtual reality experience. The virtual reality device comprises an accelerometer configured to sense an acceleration of the virtual reality device and a gyroscope configured to sense an angular velocity and orientation of the virtual reality device. Further comprising one or more proximity sensors configured to detect an object. A processor may be configured to receive data from the one or more proximity sensors and predict a potential collision between a user of the virtual reality device and the object detected by the one or more proximity sensors. An alarm may generate an alert regarding the potential collision.
Abstract:
Various implementations provide an aquatic conditions optimization management system accesses aquatic sensor data generated by one or more aquatic sensors, identifies a collection of aquatic data that includes data generated by and collected from the aquatic sensor(s), generates a set of cross-correlation matrices based on the collection of aquatic data, executes a set of unsupervised machine learning algorithms using the set of cross-correlation matrices, and determines one or more optimum conditions for one or more aquatic resources based on the executed set of unsupervised machine learning algorithms. The optimum condition(s) may be communicated to one or more individuals and may include one or more corrective actions to improve one or more of the aquatic resources.
Abstract:
A proximity sensing headphone may include a gyroscopic sensor to determine the motion of the headphone structure and a proximity sensor to determine the movement of an external object through a three-dimensional ambient environment. A proximity sensing headphone control circuit determines the relative motion or movement between the headphone structure in the three-dimensional ambient environment and the external object in the three-dimensional ambient environment to determine at least a distance between the headphone structure and the external object and a velocity of the external object through the three-dimensional ambient environment about the headphone structure. The control circuit may provide an alert output if the determined distance between the headphone structure and the external object is less than a defined distance threshold or the velocity of the external object through the three-dimensional ambient environment about the headphone structure exceeds a defined velocity threshold.
Abstract:
An apparatus is described herein. The apparatus includes a power transmit unit coil and an active shielding coil. The power transmit unit coil includes a set of main windings, positioned at a first location on a structure, to carry a first current in a first direction, wherein the first current is to cause an electromagnetic field to emanate from the power transmit unit coil. The active shielding coil is positioned at a second location on the structure and is to carry a second current in a direction substantially opposite the first direction wherein the second current is to cause a reduction of the size of the electromagnetic field.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for a signal transmission for an apparatus, such as a mobile or wearable device, based on sensor fail-safety. In one instance, the apparatus may comprise a transmitter to transmit a communication signal of the apparatus at a first power level, a sensor to monitor a process that is external to the apparatus and to provide an output signal indicating a change in a state of the process, and a control module communicatively coupled with the sensor and transmitter, to determine whether the output signal provided by the sensor has indicated a change in the external process over a threshold time period, and, based on a result of this determination, cause the transmitter to switch the transmission from the first power level to a second power level that is lower than the first power level. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for controlled power level adjustment of a wireless charging apparatus. In one instance, the apparatus may comprise a charging module to radiate an electromagnetic field to wirelessly charge an electronic device in proximity to the wireless charging apparatus; and a control module communicatively coupled with the charging module to adjust a power level of the electromagnetic field, radiated by the charging module, in response to a determination of an environmental condition in relation to the wireless charging apparatus. The control module may be configured to receive information indicative of the environmental condition from multiple sources distributed between the apparatus and the electronic device, and make the determination based at least in part on the received information. The environmental condition may comprise a presence of human tissue in proximity to the wireless charging apparatus. Other embodiments may be described and/or claimed.