Abstract:
A full spectrum light emitting device includes photoluminescence materials which generate light with a peak emission wavelength in a range 490 nm to 680 nm (green to red) and a broadband solid-state excitation source operable to generate broadband blue excitation light with a dominant wavelength in a range from 420 nm to 470 nm, where the broadband blue excitation light includes at least two different blue light emissions in a wavelength range 420 nm to 480 nm.
Abstract:
A display backlight, comprises: an excitation source, LED (146), for generating blue excitation light (148) with a peak emission wavelength in a wavelength range 445 nm to 465 nm; and a photoluminescence wavelength conversion layer (152). The photoluminescence wavelength conversion layer (152) comprises a mixture of a green-emitting photoluminescence material with a peak emission in a wavelength range 530 nm to 545 nm, a red-emitting photoluminescence material with a peak emission in a wavelength range 600 nm to 650 nm and particles of light scattering material.
Abstract:
A solid-state light emitting device comprises a light transmissive thermally conductive circuit board; an array of solid-state light emitters (LEDs) mounted on, and electrically connected to, at least one face of the circuit board; and a photoluminescence wavelength conversion component. The wavelength conversion component comprises a mixture of particles of at least one photoluminescence material (phosphor) and particles of a light reflective material. The emission product of the device comprises the combined light generated by the LEDs and the photoluminescence material. The wavelength conversion component can comprise a layer of the phosphor material and particles of a light reflective material applied directly to the array of LEDs in the form of an encapsulant. Alternatively the photoluminescence component is a separate component and remote to the array of LEDs such as tubular component that surrounds the LEDs.
Abstract:
A light emitting device comprises at least one solid-state light source (LED) operable to generate excitation light and a wavelength conversion component located remotely to the at least one source and operable to convert at least a portion of the excitation light to light of a different wavelength. The wavelength conversion component comprises a light transmissive substrate having a wavelength conversion layer comprising particles of at least one photoluminescence material and a light diffusing layer comprising particles of a light diffractive material. This approach of using the light diffusing layer in combination with the wavelength conversion layer solves the problem of variations or non-uniformities in the color of emitted light with emission angle. In addition, the color appearance of the lighting apparatus in its OFF state can be improved by implementing the light diffusing layer in combination with the wavelength conversion layer. Moreover, significant reductions can be achieved in the amount phosphor materials required to implement phosphor-based LED devices.
Abstract:
A diffuser component for a solid-state (LED) light emitting device comprises a light scattering material, wherein the light scattering material has an average particle size that is selected such that the light scattering material will scatter excitation light from a solid-state excitation source relatively more than the light scattering material will scatter light generated by at least one photoluminescence material (phosphor) in a wavelength conversion component. The diffuser component is separately manufactured from the wavelength conversion component.
Abstract:
Embodiments of the present invention are directed to nitride-based, red-emitting phosphors in red, green, and blue (RGB) lighting systems, which in turn may be used in backlighting displays and warm white-light applications. In particular embodiments, the red-emitting phosphor is based on CaAlSiN3 type compounds activated with divalent europium. In one embodiment, the nitride-based, red emitting compound contains a solid solution of calcium and strontium compounds (Ca,Sr)AlSiN3:Eu2+, wherein the impurity oxygen content is less than about 2 percent by weight. In another embodiment, the (Ca,Sr)AlSiN3:Eu2+ compounds further contains a halogen in an amount ranging from about zero to about 2 atomic percent, where the halogen may be fluorine (F), chlorine (Cl), or any combination thereof. In one embodiment at least half of the halogen is distributed on 2-fold coordinated nitrogen (N2) sites relative to 3-fold coordinated nitrogen (N3) sites.