Abstract:
A PDP includes a barrier rib formed between an upper substrate and a lower substrate to define discharge regions, and a phosphor layer including red, green, and blue phosphor layers corresponding to the discharge regions. A height of the green phosphor layer is lower than a height of the barrier rib.
Abstract:
Example embodiments relate to a plasma display panel including a first flexible substrate and a second flexible substrate opposing each other, a flexible electrode sheet having a plurality of electrodes to define a plurality of discharge spaces, the flexible electrode sheet may be between the first flexible substrate and the second flexible substrate, an exhaustion hole engaged with the second flexible substrate and may connect the discharge spaces to an outside, and a supporting unit installed between the first flexible substrate and the second flexible substrate adjacent to the exhaustion hole may be mounted, so as to connect the discharge spaces to the exhaustion hole.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates that pass through centers of each of the discharge cells. Also, external light absorbing members are formed between the second substrate and the barrier ribs layer at areas corresponding to locations of the non-discharge regions.
Abstract:
A plasma display panel includes first and second substrates facing each other, a first barrier rib structure between the first and second substrates, the first barrier rib structure including first and second barrier rib portions in communication with each other, a second barrier rib structure on the second substrate, the second barrier rib structure aligned with the first barrier rib portion to define a plurality of discharge cells, a plurality of discharge electrodes, each discharge electrode including a discharge part in the first barrier rib portion, a terminal part in communication with the second barrier rib portion, and a connection part between the discharge and terminal parts, a signal transmitting member with conductive wires, the conductive wires being connected to the terminal parts, a support part between the second substrate and the second barrier rib portion of the first barrier rib structure, and photoluminescent layers in the discharge cells.
Abstract:
A structure for connecting terminal parts of electrodes of a plasma display panel (PDP) includes a pair of substrates, barrier ribs arranged between the pair of substrates, a dielectric layer arranged between the pair of substrates, discharge electrodes, each having a discharge part arranged inside the barrier ribs, and an exposed part arranged at an end of the discharge part and outside the barrier ribs, terminal electrodes arranged on the dielectric layer, connection parts including conductive paste electrically connecting the exposed parts with the terminal electrodes, blocking partition walls arranged between the connection parts, and signal transmitting members electrically connected with the terminal electrodes.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates that pass through centers of each of the discharge cells. Also, external light absorbing members are formed between the second substrate and the barrier ribs layer at areas corresponding to locations of the non-discharge regions.
Abstract:
A plasma display panel includes first and second substrates parallel to one another, first barrier ribs between the first and second substrates to define a plurality of discharge cells, the first barrier ribs including a rough surface between the first substrate and the first barrier ribs, and a plurality of pairs of discharge electrodes in the first barrier ribs.
Abstract:
A plasma display panel includes first and second substrates facing each other, discharge sustain electrodes formed on the first substrate, and address electrodes formed on the second substrate. Barrier ribs are disposed between the first and second substrates to form a plurality of discharge cells. A phosphor layer is formed at each discharge cell. The discharge sustain electrode has first bus electrode portions spaced apart from each other by a certain distance, second bus electrode portions at least partially separated from the first bus electrode portions while being electrically connected thereto, and transparent electrodes not overlapped with the second bus electrode portions but being electrically connected to the first bus electrode portions. Interconnection electrodes are arranged over the barrier ribs to interconnect the first and second bus electrode portions.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate, the barrier ribs defining a plurality of discharge cells and a plurality of non-discharge regions. Phosphor layers are formed within each of the discharge cells. Discharge sustain electrodes are formed on the first substrate. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates that pass through centers of each of the discharge cells. Further, each of the discharge cells is formed such that ends thereof increasingly decrease in width along a direction the discharge sustain electrodes are formed as a distance from a center of the discharge cells is increased along a direction the address electrodes are formed.
Abstract:
A dielectric layer structure with grooves is provided in a plasma display panel to form the dielectric layer in an optimum shape maximizing a size of a discharge space and enhancing emission brightness and the discharge efficiency. The dielectric layer structure comprises barrier ribs defining discharge cells, a phosphor layer located inside the discharge cells, and a dielectric layer in which a groove is formed inside the discharge cell on which the phosphor layer is formed.