摘要:
An infusion system for infusing a liquid into a body includes an external infusion device and a remote commander. The external infusion device includes a housing, a receiver, a processor and an indication device. The receiver is coupled to the housing and for receiving remotely generated commands. The processor is coupled to the housing and the receiver to receive remotely generated commands and to control the external infusion device in accordance with the commands. The indication device indicates when a command has been received and indicates when the command is being utilized to control the external infusion device so that the external infusion device is capable of being concealed from view when being remotely commanded. The remote commander includes a commander housing, a keypad for transmitting commands, and a transmitter for transmitting commands to the receiver of the external infusion device.
摘要:
An infusion system for infusing a liquid into a body includes an external infusion device and a remote commander. The external infusion device includes a housing, a receiver, a processor and an indication device. The receiver is coupled to the housing and for receiving remotely generated commands. The processor is coupled to the housing and the receiver to receive remotely generated commands and to control the external infusion device in accordance with the commands. The indication device indicates when a command has been received and indicates when the command is being utilized to control the external infusion device so that the external infusion device is capable of being concealed from view when being remotely commanded. The remote commander includes a commander housing, a keypad for transmitting commands, and a transmitter for transmitting commands to the receiver of the external infusion device.
摘要:
A reusable external infusion device infuses a fluid into an individual's body. The infusion device controls the rate that fluid flows from a reservoir inside a housing, through an external tube, and into the individual's body. Essentially, the infused fluid is insulin. However, many other fluids may be administered through infusion such as, HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, vitamins, hormones, and others.
摘要:
In an implantable cardioverter-defibrillator and/or pacemaker, each having DDD pacing capabilities, an improved method of operation is described which dramatically increases the longevity of the implanted device by conserving battery power. The method comprises deactivating at least one unnecessary, power-consuming feature of the device until such feature is needed and then reactivating said feature only for so long as it is required by the patient. In a particular embodiment, the atrial sense amplifier is deactivated during normal operation of the implantable device, resulting in single-chamber sensing and pacing. Upon the occurrence of a predefined event, indicative of a need for dual-chamber sensing and pacing, the atrial sense amplifier is reactivated, the need for DDD pacing confirmed, and if appropriate, DDD pacing is begun. Once the patient's heart rate has returned to an acceptable level, the atrial sense amplifier is again deactivated and single-chamber sensing/pacing continued. In addition, the atrial sense amplifier of an ICD/pacemaker is deactivated during normal operation of the device and reactivated immediately following the detection of ventricular tachycardia. In this embodiment, DDD sensing/pacing is preferably automatically begun following this detection. Also contemplated herein, are improved devices employing the improved methods.
摘要:
In an ICD, a highly efficient biphasic defibrillation pulse is generated by switching at least two charged capacitors, e.g., three capacitors, from a parallel connection to various combinations of a parallel/series connection or a series connection during the first phase of the defibrillation pulse. Such mid-stream parallel/series connection changes of the capacitors steps up the voltage applied to the cardiac tissue during the first phase. A stepped-up voltage during the first phase, in turn, gives an extra boost to, and thereby forces additional charge (current) into, the cardiac tissue cells, and thereby transfers more charge to the membrane of the excitable cardiac cell than if the capacitors were continuously discharged in series. Phase reversal is timed with the cell membrane reaching its maximum value at the end of the first phase.
摘要:
An improved sensor and related method for multi-axial measurement of motion for an implantable medical device is disclosed. The sensor has a wide variety of applications, including use as a cardiac wall motion sensor or a physical activity sensor. The sensor includes first and second conductors over which the motion measurements are made. A first transducer provides a first motion measurement indicative of sensor acceleration during a first phase, while a second transducer provides a second motion measurement indicative of sensor acceleration during a second phase. The first and second transducers are connected in parallel so as to provide the first and second motion measurements to an implantable medical device over the first and second conductors. The first and second phases are non-overlapping periods of time so that the motion measurements from each transducer are time division multiplexed. The sensor provides motion measurements that may either be compensated or uncompensated for temperature effects. In either case, the motion sensor uses fewer conductors than conventional sensors to deliver its measurements.
摘要:
A system for delivering low pain cardioversion shocks to the heart wherein the system provides a waveform to the heart for cardioversion purposes to result in less stimulation of sensory nerves surrounding the heart. In one embodiment, the system includes a controller and a plurality of controlled switches that can be configured so that the heart receives a waveform through one or more resistors from a capacitor. The controller is configured to manipulate the switches so that the waveform that is applied to the heart is applied for more than 10 milliseconds so that the ratio of stimulation of the cardiac cells to the stimulation of sensory cells is approximately one. In another embodiment, the controller configures the switches so that a first capacitor discharges to charge a second capacitor through a resistor wherein the second capacitor is in parallel with the heart. The heart then sees a waveform that inverse exponentially rises to a peak value over a time period selected to reduce stimulation of the sensory nerves.
摘要:
A microprocessor-controlled implantable cardiac stimulating device having a normal mode, an intermediate mode, and a backup pacing mode is provided. The device switches from one mode to another in response to the detection of any one of an address error, parity error, opcode error, or watchdog timer error. The microprocessor is shut down during the delivery of a cardioversion or defibrillation shock in order to prevent signals produced by the microprocessor from being subjected to transient electrical signals. The interrupt registers of the microprocessor are also disabled during the delivery of a cardioversion or defibrillation shock. In an alternative embodiment, an implantable cardiac stimulating device is provided with redundant microprocessors in order to detect malfunctions of the microprocessors.
摘要:
A microprocessor-controlled implantable cardiac stimulating device having a normal mode, an intermediate mode, and a backup pacing mode is provided. The device switches from one mode to another in response to the detection of any one of an address error, parity error, opcode error, or watchdog timer error. The microprocessor is shut down during the delivery of a cardioversion or defibrillation shock in order to prevent signals produced by the microprocessor from being subjected to transient electrical signals. The interrupt registers of the microprocessor are also disabled during the delivery of a cardioversion or defibrillation shock. In an alternative embodiment, an implantable cardiac stimulating device is provided with redundant microprocessors in order to detect malfunctions of the microprocessors.
摘要:
An analyzer-programmer system (30) for use with an implantable medical device, such as a cardiac pacemaker (20). The system facilitates non-invasive communications with the implantable device and makes analysis of the operation of the implantable device easier to understand and perform. The system includes conventional processor means (42) for processing a sequence of stored instructions stored in programmable read-only memory, or ROM (40). The ROM, although designed to be accessed through predefined page of information, and blocks within such pages, is configured to allow in-page addressing within any of a plurality of pages in a linear fashion. Programmed intervals to be sent to the implantable device are displayed by the system in tabular form or as scaled time-lines or bars (FIG. 9A), with each separate interval beginning and ending in proper timed sequence, thereby providing a prediction of the expected performance. Such programmed intervals can overlay or sidelay measured performance (FIG. 9B), thereby facilitating a comparison between predicted and measured performance. The system also includes telemetry head means (28) for sending and receiving control and data signals to and from the implanted medical device ( 20). The telemetry head means (28) includes processing circuitry (FIG. 4C) that greatly simplifies the other circuitry needed in order to effectuate such communication.