Abstract:
An infusion medium delivery system, device and method for delivering an infusion medium to a patient-user, includes a needle inserter device and method for inserting a needle and/or cannula into a patient-user to convey the infusion medium to the patient-user. The needle inserter device and method operate to insert a needle and cannula into a patient-user's skin and automatically withdraw the needle from the patient-user, leaving the cannula in place and in fluid flow communication with a reservoir. The delivery device may include a base portion and a durable portion connectable to the base portion, and wherein the base portion can be separated from the durable portion and disposed of after one or more specified number of uses. The base portion supports the reservoir and the needle inserter device, while the durable portion supports a drive device for selectively driving the infusion medium out of the reservoir and into the needle and/or cannula.
Abstract:
A delivery device includes a durable housing portion and a separable disposable portion that selectively engage and disengage from each other. The disposable housing portion secures to the patient-user and may be disposed of after it has been in use for a prescribed period. Components that normally come into contact with a patient-user or with infusion media are supported by the disposable housing portion for disposal after the prescribed use, while the durable housing portion supports other components such as electronics for controlling delivery of infusion media from the reservoir and a drive device and drive linkage.
Abstract:
A reusable external infusion device infuses a fluid into an individual's body. The infusion device controls the rate that fluid flows from a reservoir inside a housing, through an external tube, and into the individual's body. Essentially, the infused fluid is insulin. However, many other fluids may be administered through infusion such as, HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, vitamins, hormones, and others.
Abstract:
A connector assembly mounted on an implantable cardiac stimulation device has an actuator mechanism for fixing and sealing electrical leads inserted into lead receptacles within the connector assembly without the use of setscrews. Fixing and sealing of the leads is accomplished by compressing resilient lead lock seals of O-ring shape, disposed in annular recesses, with lip portions of a plunger drawn toward the molded support by the actuator mechanism. In a first embodiment of the actuator mechanism, rotation of a cam actuator transversely journaled within the support, using a torque wrench or similar tool, moves a cam slide attached to the plunger through a fixed displacement between lock and unlock positions as an offset camming portion of the actuator engages the surfaces of a slot within the cam slide. In a second embodiment, constant-force compression of the lead lock seals by the plunger is provided by using a torque wrench to rotate a screw actuator having one end coupled to the plunger and an opposite threaded end received within a screw block transversely disposed within the support. In a third embodiment, a rotatable toothed pinion engages a toothed slot within a slidable rack to provide incremental advancement of the rack, and thereby stepped displacement and force, with a resulting increased resolution. In a fourth embodiment, compliance provided by either a spring formed within the cam slide, or a spring nut mounted thereon, prevents excessive force from being exerted on leads of larger diameter.
Abstract:
A lead connector seal and locking assembly for an implantable pulse generator such as a pacemaker is detailed. The pulse generator includes a header portion and an enclosed metallic housing or can, wherein the header portion includes an orifice for receiving a lead connector. The lead connector is secured within the orifice by the use of a defeasible active seal and locking mechanism, which includes a sphincter seal and a beveled washer which is forced against the sphincter seal upon insertion of an actuator. The actuator may be a forked clip inserted into a slot formed within the epoxy header in such a manner that prongs of the forked clip force the beveled cam to be displaced axially within the orifice of the header portion, compressing the sphincter seal. The compression of the sphincter seal causes the sphincter seal to bulge radially, both outward and inward, in a generally symmetrical manner, thereby simultaneously contacting and sealing against the inside wall of the orifice of the header portion, and the body of the connector.
Abstract:
The embodiments of the present invention relate to storage devices for hats and/or caps that allow for organizing the hats and/or caps into space saving arrangements. The embodiments comprise an outer shell that is formed in part by a movable closure that allows for access to the interior of the shell for the purpose of placing hats and/or caps in the outer shell and/or removing hats and/or caps from the outer shell. In some embodiments of the present invention, the storage device includes means for being hung on a hanging rod or pole that is usually positioned in a closet and/or for being hung on a hanging member, device or apparatus that may be positioned behind a door, on a wall, or in any applicable position or arrangement. In some embodiments, the storage device includes means for hanging other similar storage devices from the storage device of the present invention.
Abstract:
An external infusion device that infuses a fluid into an individual's body includes a housing, a reservoir, a drive system, a power supply, electrical elements, and a tab. The reservoir contains the fluid, and the drive system forces the fluid from the reservoir. The electrical elements control the power to the drive system to regulate the rate that fluid is forced from the reservoir. The tab mates with the housing, and contains at least one electrical element. The tab is removable, and may be replaced with a different tab. The different tab may change the rate fluid is forced from the reservoir. A tab may be removed from one external infusion device and installed in a different external infusion device. The tab may be limited to use in a predetermined number of external infusion devices and may include a power supply.
Abstract:
A multi-contact connector system for electrically and mechanically connecting a lead for the delivery of electrical energy at a body site to an implantable source of the electrical energy includes a plug connector element carried at a proximal end of the lead which is received in a socket connector element carried on the source of electrical energy. The plug connector element is a radially expandable sleeve with a number of exteriorly exposed contacts respectively connected to conductors contained within the lead. Corresponding contacts are mounted in the interior of the socket connector element. The plug connector sleeve fits over a flexible expansion element contained in the socket connector element. The expansion element is operated by a toggle switch after the connector elements are engaged so as to radially expand. The sleeve of the plug connector element on which the contacts are carried is also radially expanded, so that the contacts on the connector elements are forced into tight engagement when the expansion element is actuated.
Abstract:
A multi-part molded pacemaker connector meets the precise requirements imposed by the VS-1 standard, yet does not require complex nor expensive machining of individual parts. The connector includes a molded body tip and a molded body ring, adapted to be joined together during assembly. The body tip is molded to include a conductive connector block attached to a first conductive ribbon as an integral part thereof. The body ring is molded to include a second conductive ribbon, having a looped end exposed therewithin to provide a precise specified diameter against which a garter spring contact is placed. An inner shoulder molded within the body ring holds the spring contact laterally on one side. During assembly, an annular spacer is pressed into the body ring to restrain the spring contact laterally on the other side. Inner and outer annular seals are also inserted into the body tip and body ring during assembly. After assembly, i.e., after joining the body tip to the body ring, the connector may be pretested for leakage, dimensionality and conductivity prior to casting it in epoxy as part of the pacemaker connector top.
Abstract:
A feedthrough connector for an implantable medical device, combines the connector function with the feedthrough function and eliminates the need for the cast epoxy connector previously used on such devices. The feedthrough connector includes a barrel assembly having open and closed ends. The open end of the assembly has an opening for receiving a slidably inserted electrical lead. The barrel assembly includes cylindrical metal conductive portions separated by cylindrical ceramic insulating portions. Spring contacts are mounted on the inside of the metal portions and are adapted to make electrical contact with the appropriate contacts of an electrical lead when the lead is inserted into the connector. The outer side of the metal portions are electrically connected to the appropriate electrical circuit within the housing, and the open end of the barrel assembly is bonded (welded) to the device housing so that the inside of the device can be hermetically sealed. Releasable lead gripping means are included as part of the barrel assembly to detachably lock and seal the electrical lead in its inserted position inside of the connector.