Abstract:
Embodiments of the invention relate to device-embedded IDDQ testing in the field to detect defects, aging, and other reliability reducing problems. Methods of testing integrated circuits and integrated circuit devices are disclosed. For example, an integrated circuit device can comprise an integrated circuit, a buffer capacitor coupled to the integrated circuit; and IDDQ test circuitry coupled to the buffer capacitor and configured to suspend normal operation of the integrated circuit and measure a discharge time of the buffer capacitor, wherein the discharge time is related to a leakage current of the integrated circuit.
Abstract:
A sensor has a suspended mechanical resonator being responsive to one of a linear acceleration and an angular velocity of the sensor such that a first area and a second area are subjected to opposite elongation movements and responsive to the other such that the first area and the second area are subjected to a common elongation movement, a first mechanical-electrical interface interacting with the first area, a second mechanical-electrical interface interacting with the second area, a common mode signal generator coupled to the mechanical-electrical interfaces with a common mode signal output, a differential mode signal generator coupled to the mechanical-electrical interfaces with a differential mode signal output, a first processing circuit coupled to the differential mode output, with an output for a first processed signal, and a second processing circuit coupled to the common mode output with an output for a second processed signal.
Abstract:
A semiconductor device includes a diaphragm, a sensing element, and a circuit. The sensing element is configured to sense deflection of the diaphragm. The circuit is configured to heat the diaphragm to induce deflection of the diaphragm.
Abstract:
A system including circuits, conductors and sensors. The circuits are configured to supply voltages. The conductors are configured to receive the supply voltages and the sensors are configured to provide data. Each of the sensors is configured to receive the supply voltages via a different set of two of the conductors and provide data via the different set of two of the conductors. The number of conductors is equal to the numbers of sensors or one more than the number of sensors.
Abstract:
A method for online testing of a signal path from a sensor cell to an evaluation point, including providing at least two mutually different test signals, changing the sensor cell output signal on the basis of the at least two mutually different test signals in accordance with a predetermined change specification to obtain the sensor signal, so that the sensor signal depends on the sensor cell output signal and the at least two test signals, outputting the sensor signal or a signal derived from the sensor signal onto the signal path, processing the sensor signal or the signal derived from the sensor signal while taking into account the predetermined change specification to obtain a processed signal, and examining the processed signal with regard to the presence of the at least two mutually different test signals to provide a signal path fault indication on the basis thereof.
Abstract:
A system for capacitive object recognition including a pair of electrodes, one of the electrodes having an adjustable parameter, and a controller modeling current pathways formed by interaction of an object with an electric field between the pair electrodes as a network of capacitors. The controller is configured to set the adjustable parameter to a first setting and to apply a set of alternating current voltages to the pair electrodes and measure a resulting first set of current values at each of the electrodes, configured to set the adjustable parameter to a second setting and apply the set of alternating current voltages to the pair of electrodes and measure a resulting second set of current values at each of the electrodes, and configured to determine values for up to all capacitors of the network of capacitors based on the first and second sets of current values.
Abstract:
The invention is related to capacitive sensing and detection systems and methods. In one embodiment, a capacitive sensor system comprises a first electrode arrangement having a first characteristic and related to a first capacitance, a second electrode arrangement having a second characteristic different from the first characteristic and related to a second capacitance, and a control unit coupled to the first and second electrode arrangements and configured to identify an object-dependent variable from at least one of the first and second characteristics and first and second capacitances.
Abstract:
A sensor has a suspended mechanical resonator being responsive to one of a linear acceleration and an angular velocity of the sensor such that a first area and a second area are subjected to opposite elongation movements and responsive to the other such that the first area and the second area are subjected to a common elongation movement, a first mechanical-electrical interface interacting with the first area, a second mechanical-electrical interface interacting with the second area, a common mode signal generator coupled to the mechanical-electrical interfaces with a common mode signal output, a differential mode signal generator coupled to the mechanical-electrical interfaces with a differential mode signal output, a first processing circuit coupled to the differential mode output, with an output for a first processed signal, and a second processing circuit coupled to the common mode output with an output for a second processed signal.
Abstract:
An ESD protective circuit having a contact terminal, a first supply voltage terminal for a first supply potential, a second supply voltage terminal for a second supply potential, a transistor chain having several transistors, wherein drain terminals of the transistors are connected to one of the supply voltage terminals, wherein the control terminal of a first transistor of the transistor chain is connected to the other supply voltage terminal, wherein the source terminal of the last transistor of the transistor chain is connected to the contact terminal, and a current source which is connected to a source terminal of at least one of the transistors of the transistor chain and is able to provide a current which compensates, up to a maximum tolerable voltage deviation from the first or second supply potential at the contact terminal, a current flowing into or from the source terminal.
Abstract:
A sensor device has a sensor assembly with at least one sensor element, an additional sensor assembly having at least one additional sensor element, and a switch-in element which couples the additional sensor assembly to the sensor assembly responsive to a switch-in signal to obtain an overall sensor assembly having a reduced power demand.