摘要:
A method includes detecting radiation that traverses a material having a known spectral characteristic with a radiation sensitive detector pixel that outputs a signal indicative of the detected radiation and determining a mapping between the output signal and the spectral characteristic. The method further includes determining an energy of a photon detected by the radiation sensitive detector pixel based on a corresponding output of the radiation sensitive detector pixel and the mapping.
摘要:
An apparatus includes a local minimum identifier (408) that identifies a local minimum between overlapping pulses in a signal, wherein the pulses have amplitudes that are indicative of the energy of successively detected photons from a multi-energetic radiation beam by a radiation sensitive detector, and a pulse pile-up error corrector (232) that corrects, based on the local minimum, for a pulse pile-up energy-discrimination error when energy-discriminating the pulses using at least two thresholds corresponding to different energy levels. This technique may reduce spectral error when counting photons at a high count rate.
摘要:
Conventional CSCT may require a complex reconstruction involving a large number of calculations. According to an exemplary embodiment of the present invention, additional collimators are used in combination with energy revolving detectors, which may allow that a CSCT image may be reconstructed by a simple superposition of images obtained from different viewing angles in a direct tomography data acquisition scheme. Advantageously, a reconstruction may be avoided. Advantageously, this may allow for an improved image quality while reducing an amount of calculations required for generating the output image.
摘要:
A computer tomography apparatus for examination of an object of interest includes detecting elements adapted to detect electromagnetic radiation scattered from the object of interest in an energy-resolving manner. A combination unit is adapted to combine signals detected by different detecting elements such as to reduce the amount of data to be processed for determining structural information concerning the object of interest.
摘要:
However, this requires additional collimating means and this reduces the photon flux applied to the detectors. Due to this, longer measuring times may be required. Furthermore, the geometry is incompatible to known cone-beam CT-scanners. According to an exemplary embodiment of the present invention, a cone-beam CSCT scanner is provided using energy resolving detectors with a collimator arranged on the detectors, which allows spatially-resolved reconstruction of the scattering function. Advantageously, this may allow for an improved scanning speed in baggage inspection or medical applications.
摘要:
The invention describes a method of generating metabolic images of an investigation region (3) of a body (1) by irradiating an X-ray fluorescence marker in that region and detecting the resulting X-ray fluorescence with a fluorescence detector (30). A fan beam (12) is used as a source of primary X-radiation, thus allowing the scanning of a whole body slice (3) in one step. The fluorescence image may be directly measured, e.g. by mapping voxels (104) of the investigation region onto pixels (134) of the detector (130) with the help of a pinhole collimator (132), or it may be reconstructed by procedures of computed tomography. Moreover, a morphological image may be generated by simultaneously recording X-ray transmission through the body (1).
摘要:
The invention relates to a computed tomography method in which an examination zone is irradiated along a circular trajectory by a fan-shaped radiation beam. Radiation coherently scattered in the examination zone is measured by a detector unit, the variation in space of the scatter intensity in the examination zone being reconstructed from said measuring values. Reconstruction is performed by back projection in a volume which is defined by two linearly independent vectors of the rotational plane and a wave vector transfer.
摘要:
Due to the provision of slit collimators an intensity of a fan beam is reduced significantly such that expensive high power x-ray tubes have to be used. According to an exemplary embodiment of the present invention, a high power tube may be used with a very long focus in combination with a focusing collimator. The tube can be a cheap fixed anode tube still with a high power of, for example, 15 kW due to the large focus. The collimator may ensure that the resolution of the reconstructed scatter function is not degraded. The illuminated slice thickness is increased which may allow for an isotropic spatial resolution.