Abstract:
It is an object to suppress a disturbance or distortion of an insertion image in the vicinity of an effective image edge portion such as an edge portion of a screen or the like caused by a moving compensation type frame rate conversion (FRC). An image processing device is provided with a moving vector detection circuit (2) for detecting a moving vector of an input image signal, an effective image edge portion judging circuit (5) for judging if a moving vector detecting position is adjacent to the effective image edge portion, and a vector switching circuit (3) for switching a vector in accordance with the judging result. The vector switching circuit (3) fixes the vector to 0 vector in the case where the moving vector detecting position is adjacent to the effective image edge portion. In the case where the position is in other region, the vector switching circuit (3) outputs the moving vector detected by the moving vector detection circuit (2) to an insertion vector allocation circuit (4).
Abstract:
A display device according to the present invention includes a plurality of pixels arranged in a matrix. Each of the plurality of pixels is formed of four or five types of sub pixels that display different colors from each other. In each pixel, a first sub pixel that displays a color having the highest luminance and a second sub pixel that displays a color having the second highest luminance are located so as not to be adjacent to each other. The four or five types of sub pixels include a plurality of display units, each of which is capable of displaying a specific color and is formed of one sub pixel or two or more continuous sub pixels. In the display device according to the present invention, when an input image has a resolution higher than a display resolution defined by a total number of the plurality of pixels, each of the plurality of display units is usable as a virtual pixel for providing display. According to the present invention, a multiple primary color display device which suppresses the decline of display quality even when the resolution of an input image is higher than the resolution of the display device is provided.
Abstract:
It is an object to prevent the image quality deterioration of a moving image likely to include a plurality of the same consecutive images such as a movie video image or a CG video image due to the motion-compensated frame rate conversion (FRC) processing. An image displaying device is provided with an FRC portion (10) for converting the number of frames in an input image signal by interpolating an image signal to which a motion compensation processing has been given between the frames in the input image signal, a controlling portion (14) for controlling each portion according to an image tone mode selected by a user. The FRC portion (10) includes a motion vector detecting portion (11e) for detecting a motion vector between the frames of the input image signal, an interpolating vector evaluating portion (11f) for allocating an interpolating vector between the frames based on the motion vector information, and an interpolating frame generating portion (12d) for generating an interpolating frame from the interpolating vector. In the case that the image tone mode selected by the user is a predetermined image tone mode, the controlling portion (14) set the motion vector detected by the motion vector detecting portion (11e) to zero-vector to make the motion compensation processing of the FRC portion (10) ineffective.
Abstract:
In an image displaying device provided with a frame rate conversion (FRC) portion, the image quality deterioration in a moving image likely to include a plurality of the same consecutive images due to a FRC processing is prevented. The FRC portion (100) of the image displaying device includes a motion vector detecting portion (101) that detects motion vector information from an input image signal, an interpolation frame generating portion (106) that generates interpolation frames based on the motion vector information obtained by the motion vector detecting portion (101) and a same image detecting portion (105) that detects a case where the same images continue in the input image signal. In the case where the image of the (n−1)-th frame in the input image signal is substantially the same as the image of the n-th frame, interpolation image generating processing with the motion compensation processing made ineffective is performed between n-th frame and (n+1)-th frame to prevent that the interpolation image including a lot of errors is output.
Abstract:
An image processing apparatus of the present invention comprising (a) a first signal processing circuit for applying gamma correction to an n-bit (n: a natural number) digital signal inputted as a video signal and for converting the n-bit digital signal into an m-bit (m>n, m: a natural number) digital signal, and (b) a second signal processing circuit for adding a noise signal, which is used for pseudo contour reduction, into the m-bit digital signal from the first signal processing circuit and for outputting a Q-bit (Q: a natural number) digital signal, which is obtained from rounding off a less significant (m−Q) bit (Q≦n) from the m-bit digital signal, to a display section.
Abstract:
The crosstalk of a display apparatus can be efficiently eliminated to realize a precise, high-quality display. A liquid crystal display apparatus includes, as a crosstalk elimination circuit, an adjacent picture element acquisition circuit (1) that acquires display signals of picture elements adjacent to a self picture element, and two-dimensional LUTs (2) that use the display signals of the adjacent picture elements, acquired by the adjacent picture element acquisition circuit (1), to correct display signals of the self picture element so as to correct RGB display signals. The picture element display signals as corrected by the correction values output from the LUTs (2) are output to a source driver (4) via a timing controlling unit (TC) (3). In the crosstalk elimination circuit, the display signals of a picture element to be corrected and those of picture elements adjacent to the picture element that influence the picture element are used to acquire a correction value, thereby correcting the display signals of the correction target picture element.
Abstract:
In an image display device having a frame rate converting (FRC) portion, it is possible to prevent image degradation of a combined image display portion such as an OSD and PinP attributed to the FRC process. The image display device includes: an FRC portion 10 for converting the number of frames of an input image signal by interpolating an image signal subjected to a motion compensation process between the frames of the input image signal; an OSD processing portion 14 for superposing an OSD signal on the input image signal, and a controlling portion 15. The FRC portion 10 has a motion vector detecting portion 11e for detecting a motion vector between the frames of the input image signal, an interpolation vector evaluating portion 11f for allocating interpolation vector between frames based on the motion vector information, and an interpolation frame generating portion 12d for generating an interpolation frame from the interpolation vector. When the OSD signal is superposed on the input image signal, the controlling portion 15 disables the motion compensation process of the FRC portion 10 by making the motion vector detected by the motion vector detecting portion 11e 0 vector.
Abstract:
A housing 20 is equipped for supporting, from a side, a platform of a wavelength selection device comprising an input/output port 10, a collimator 11, an expanding optical system 12, a spectroscopic element, a collecting optical system 14 and a micro electro mechanical system (MEMS) mirror array 15. Because the above noted optical member is supported from the side only, influences of a thermal expansion is limited to the height direction of the optical member and the optical axis direction. By these aspects, the influence of thermal expansion is limited to a two-dimensional from a common three-dimensional, thereby enabling a design of a countermeasure to an influence of a thermal expansion. Also, the support from the side does not create a dead space thereby making the wavelength selection device compact.
Abstract:
An image processing apparatus, for processing an image signal representing pixel values of pixels so as to display an image including the pixels by an image display apparatus, includes a detection section for detecting a low frequency portion of the image signal, which corresponds to a first series of pixels having a first pixel value and a second series of pixels having a second pixel value different from the first pixel value, the second series of pixels following the first series of pixels; and a signal expansion section for expanding a prescribed portion of the low frequency portion of the image signal, the prescribed portion including at least one of the first series of pixels and the second series of pixels, such that the first pixel value is gradually changed to the second pixel value.
Abstract:
The invention relates to a process for manufacturing plasma display panel and a substrate holder, preventing an occurrence of dust giving an unfavorable effect in a forming process of a film on a substrate of a plasma display panel in a film forming apparatus. When forming the film, a substrate (3) and a dummy substrate (35) are held by a first substrate holder (31) composed of a supporter sustaining underneath the substrate and a restrictor restricting a position of the substrates (3) in a plane direction, and a second substrate holder (32) sustaining the first substrate holder (31).