Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode; and a sheet-form laminate of separation layer-outer electrode, spirally wound to surround the outer surface of the inner electrode, the laminate being formed by carrying out compression for the integration of a separation layer for preventing a short circuit, and an outer electrode.According to the present disclosure, the electrodes and the separation layer are compressed and integrated to minimize ununiform spaces between the separation layer and the outer electrode and reduce the thickness of a battery to be prepared, thereby decreasing resistance and improving ionic conductivity within the battery. Also, the separation layer coming into contact with the electrodes absorbs an electrolyte solution to induce the uniform supply of the electrolyte solution into the outer electrode active material layer, thereby enhancing the stability and performances of the cable-type secondary battery.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode; and a sheet-form laminate of separation layer-outer electrode, spirally wound to surround the outer surface of the inner electrode, the laminate being formed by carrying out compression for the integration of a separation layer for preventing a short circuit, and an outer electrode.According to the present disclosure, the electrodes and the separation layer are compressed and integrated to minimize ununiform spaces between the separation layer and the outer electrode and reduce the thickness of a battery to be prepared, thereby decreasing resistance and improving ionic conductivity within the battery. Also, the separation layer coming into contact with the electrodes absorbs an electrolyte solution to induce the uniform supply of the electrolyte solution into the outer electrode active material layer, thereby enhancing the stability and performances of the cable-type secondary battery.
Abstract:
The present invention relates to an anode for a cable-type secondary battery, more specifically an anode for a cable-type secondary battery, comprising a spiral electrode consisting of at least two wire-type electrodes which are spirally twisted with each other, each of the wire-type electrodes comprising a wire-type current collector, an anode active material layer formed by coating on the outer surface of the wire-type current collector, and a polymer resin layer formed by coating on the outer surface of the anode active material layer; and a cable-type secondary battery comprising the anode. The anode for a cable-type secondary battery according to the present invention comprises a polymer resin layer formed by coating on the outer surface of an anode active material layer, thereby preventing the release of the anode active material layer from a wire-type current collector and eventually preventing the deterioration of battery performances.