Abstract:
A method of receiving a broadcast signal in a receiver. The received broadcast signal is demodulated. The demodulated broadcast signal is parsed to output at least one signal frame. The at least one signal frame includes first data, second data, and signaling data. The signaling data is decoded. The first data and the second data are decoded with different code rates, respectively. The at least one signal frame includes known data for channel estimation. The at least one signal frame includes a plurality of subframes, and the subframes include a plurality of data units. A first data unit in the data units includes the first data, and a second data unit in the data units includes the second data. The signaling data includes information for fast service acquisition which allows the receiver to locate upper layer signaling information. The signaling data further includes information on encoding type of data.
Abstract:
A digital broadcasting system and a method of processing data are disclosed, which are robust to error when mobile service data are transmitted. To this end, additional encoding is performed for the mobile service data, whereby it is possible to strongly cope with fast channel change while giving robustness to the mobile service data.
Abstract:
A method is provided for processing broadcast data in a broadcast transmitter. Broadcast service data is randomized. The randomized broadcast service data is first-encoded to add parity data to the randomized broadcast service data. The first-encoded broadcast service data is second-encoded. The second-encoded broadcast service data is first interleaved. The first-interleaved broadcast service data is second-interleaved. Signaling data is encoded for signaling the broadcast service data. The encoded signaling data is third-interleaved. The third-interleaved signaling data is fourth interleaved. A frame is transmitted that is divided into a data region including the second-interleaved broadcast service data, a first signaling region including the fourth-interleaved signaling data and a second signaling region that includes at least one symbol that is used for synchronization and channel estimation. The frame includes known data. The encoded signaling data includes information for identifying the code rate and information related to the known data.
Abstract:
A method and transmitting system for processing data are discussed. The method according to an embodiment includes randomizing enhanced data; first encoding the randomized enhanced data to add first parity data for error correction, thereby forming a frame; dividing data of the frame into a plurality of groups, wherein the plurality of groups have a same size; first interleaving data of each group; second interleaving the first-interleaved data; encoding signaling information at a code rate; and transmitting a broadcast signal including the second-interleaved enhanced data and the encoded signaling information. Second encoding on the randomized enhanced data is selectively performed, wherein, when the second encoding is performed, second parity data for error detection are added to the randomized enhanced data. The signaling information includes transmission parameters to indicate whether the second encoding is performed.
Abstract:
A method processing broadcast data in a broadcast transmitter is described. The method may include randomizing broadcast service data, encoding the randomized broadcast service data at a code rate of D/E. D
Abstract translation:描述在广播发射机中处理广播数据的方法。 该方法可以包括随机化广播服务数据,以D / E的码率编码随机广播服务数据。 D
Abstract:
A method is described for transmitting broadcast signals. First encoding of mobile data for a mobile service is performed. Second encoding of the first encoded mobile data is performed. The second encoded mobile data multiplexed with main data for a main service in a time domain is transmitted. The second encoded mobile data is allocated in a mobile unit and the main data is allocated in a main unit. The second encoded mobile data is transmitted with signaling information. The signaling information includes information to detect the mobile unit and a coding rate of the mobile data.
Abstract:
A digital television (DTV) transmitter and a method of coding data in the DTV transmitter method are disclosed. A pre-processor pre-processes the enhanced data by coding the enhanced data for forward error correction (FEC) and expanding the FEC-coded enhanced data. A data formatter generates one or more groups of enhanced data packets, each enhanced data packet including the pre-processed enhanced data. And, a packet multiplexer generates at least one burst of enhanced data by multiplexing the one or more groups of enhanced data packets. Herein, each burst of enhanced data includes at least one group of enhanced data packets. The DTV transmitter may further include a scheduler which generates first and second control signals to control operations of the data formatter and the packet multiplexer, respectively.
Abstract:
A method of transmitting a broadcast signal includes performing Reed-Solomon (RS) frame encoding and Cyclic Redundancy Check (CRC) encoding on first mobile service data to form a primary RS frame and on second mobile service data to form a secondary RS frame; encoding on at least the first mobile service data or the second mobile service data, in serial concatenated convolution code (SCCC) block units; encoding signaling information including transmission parameters, the transmission parameters including SCCC encoding information and RS frame encoding information; formatting a data group including the encoded first mobile service data and second mobile service data, wherein the first mobile service data are included in a first region within the data group and the second mobile service data are included in a second region within the data group, the second region being different from the first region; and transmitting the broadcast signal including the formatted data group.
Abstract:
A digital television system performing modulation/demodulation by VSB (vestigial side band) is provided. The invention includes a VSB transmitter including an additional error correction encoder designed such that a signal mapping of a TCM encoder is considered, a multiplexer (MUX), a TCM encoder operating in correspondence with state transition processes of the additional error correction encoder, and a signal transmission part including an RF converter. The invention further includes a VSB receiver including a signal receiver part receiving a signal transmitted from the transmitter, a TCM decoder, a signal processing part including a derandomizer, and an additional error correction decoder part.
Abstract:
A digital broadcasting system and a method of processing data are disclosed, which are robust to error when mobile service data are transmitted. To this end, additional encoding is performed for the mobile service data, whereby it is possible to strongly cope with fast channel change while giving robustness to the mobile service data.