-
公开(公告)号:US09804264B2
公开(公告)日:2017-10-31
申请号:US15470730
申请日:2017-03-27
CPC分类号: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
摘要: A lidar system which includes one or more light sources to produce one or more optical signals and a demultiplexer to separate the one or more optical signals into a plurality of sub-portions which may be distributed to a plurality of sensor heads. The sensor heads emit the sub-portions of the one or more optical signals into a plurality of fields of view and to detect reflected or scattered light from the fields of view. The lidar system also includes one or more optical amplifiers and one or more filters to reduce amplified spontaneous emission produced by the one or more optical amplifiers.
-
公开(公告)号:US20170299721A1
公开(公告)日:2017-10-19
申请号:US15470735
申请日:2017-03-27
发明人: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC分类号: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
摘要: A lidar system with a light source to emit a pulse of light into a field of view and a receiver to detect a return pulse of light which is reflected or scattered by a target in the field of view. The receiver may include an avalanche photodiode to generate an electrical-current pulse corresponding to the return pulse and a transimpedance amplifier to produce a voltage pulse that corresponds to the electrical-current pulse. A voltage amplifier may amplify the voltage pulse and a comparator may produce an edge signal when the amplified voltage pulse exceeds a threshold. A time-to-digital converter may determine a time interval based on an emission time of the pulse of light and based on the edge signal. A processor may determine a distance to the target using the time interval.
-
公开(公告)号:US20170131387A1
公开(公告)日:2017-05-11
申请号:US15342595
申请日:2016-11-03
CPC分类号: G01S7/4817 , G01S7/4812 , G01S7/4816 , G01S17/10 , G01S17/42 , G01S17/89
摘要: A lidar system may have a light source configured to emit a pulse of light and a scanner that scans a field of view of the light source in a forward-scanning direction across a plurality of pixels located downrange from the lidar system. The scanner can direct the pulse of light toward the second pixel and scan a field of view of a first detector. The first-detector field of view can be offset from the light-source field of view in a direction opposite the forward-scanning direction. When the pulse is emitted, the first-detector field of view can at least partially overlap the first pixel and the light-source field of view can at least partially overlap the second pixel. The first detector can be configured to detect a portion of the pulse of light scattered by a target located at least partially within the second pixel.
-
公开(公告)号:US20240053457A1
公开(公告)日:2024-02-15
申请号:US18491935
申请日:2023-10-23
CPC分类号: G01S7/497 , G01S17/58 , G01S7/4868 , G01S7/484 , G01S7/4804
摘要: To dynamically control power in a lidar system, a controller identifies a triggering event and provides a control signal to a light source in the lidar system adjusting the power of light pulses emitted by the light source. The triggering event includes identifying a particular type of object within a threshold distance of the lidar system. In some scenarios, the power is adjusted to address eye-safety concerns.
-
公开(公告)号:US20200256960A1
公开(公告)日:2020-08-13
申请号:US16788762
申请日:2020-02-12
IPC分类号: G01S7/481 , G01S7/4863
摘要: In one embodiment, a lidar system includes a light source configured to emit a pulse of light and a scanner configured to direct the emitted pulse of light into a field of regard of the lidar system. The lidar system also includes a receiver configured to receive a portion of the emitted pulse of light scattered by a target located a distance from the lidar system. The receiver includes a digital micromirror device (DMD) that includes a two-dimensional array of electrically addressable micromirrors, where a portion of the micromirrors are configured to be set to an active-on state to direct the received pulse of light to a detector array. The detector array includes a two-dimensional array of detector elements, where the detector array is configured to detect the received pulse of light and produce an electrical signal corresponding to the received pulse of light.
-
公开(公告)号:US20200182968A1
公开(公告)日:2020-06-11
申请号:US16554709
申请日:2019-08-29
摘要: In one embodiment, a lidar system includes a light source configured to emit multiple optical signals directed into a field of regard of the lidar system. The optical signals include a first optical signal and a second optical signal, where the second optical signal is emitted a particular time interval after the first optical signal is emitted. The lidar system also includes a receiver configured to detect a received optical signal that includes a portion of the emitted first or second optical signal that is scattered by a target located a distance from the lidar system. The received optical signal is detected after the second optical signal is emitted. The receiver includes a first detector configured to detect a first portion of the received optical signal and a second detector configured to detect a second portion of the received optical signal.
-
公开(公告)号:US10591600B2
公开(公告)日:2020-03-17
申请号:US15363726
申请日:2016-11-29
IPC分类号: G01C3/08 , G01S17/14 , G01S17/42 , G01S7/481 , G01S7/484 , G01S7/4863 , G01S17/89 , G01S7/4861 , G01S17/26 , G01S17/931 , G01S17/08 , H01S3/067 , H01S3/08 , H01S3/094 , H01S3/0941 , H01S3/10 , H01S3/11 , H01S5/40 , G01S7/4865 , G01S17/10 , G01S7/48 , G01S7/483 , G01S17/02 , H01S3/00 , G01S17/00 , G01S17/06 , G01S17/88 , G01S7/487 , H01S5/00 , H01S3/23 , H01S3/16 , G01S17/32
摘要: In one embodiment, a lidar system includes a light source configured to emit pulses of light. The lidar system also includes multiple optical links and multiple sensor heads. Each optical link couples the light source to a corresponding sensor head, and each optical link is configured to convey at least a portion of the emitted pulses of light from the light source to the corresponding sensor head. Each sensor head includes a scanner configured to scan pulses of light across a field of regard of the sensor head, where the scanned pulses of light include the portion of the emitted pulses of light conveyed from the light source to the sensor head by the corresponding optical link. Each sensor head also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered or reflected by a target located downrange from the sensor head.
-
公开(公告)号:US20200076152A1
公开(公告)日:2020-03-05
申请号:US16555304
申请日:2019-08-29
IPC分类号: H01S3/0941 , G01S7/481 , H01S3/16 , H01S3/11 , G01S7/484 , G01S17/10 , H01S3/113 , H01S3/094 , H01S3/091 , H01S5/068 , H01S5/125 , H01S5/024 , G01S17/88 , G01S17/32 , G02B26/10 , G02B26/08 , G02B26/12 , G02B5/20
摘要: In one embodiment, a lidar system includes a light source configured to emit light at one or more wavelengths between 1200 nm and 1400 nm. The lidar system also includes a scanner configured to scan the emitted light across a field of regard of the lidar system and a receiver configured to detect a portion of the emitted light scattered by a target located a distance from the lidar system. The lidar system further includes a processor configured to determine the distance from the lidar system to the target based at least in part on a round-trip time for the portion of the emitted light to travel from the lidar system to the target and back to the lidar system.
-
公开(公告)号:US10571567B2
公开(公告)日:2020-02-25
申请号:US15965197
申请日:2018-04-27
IPC分类号: G01S17/08 , G01S7/481 , G01S17/93 , G02B26/10 , G02B26/12 , H01L27/146 , G01S17/42 , G02B5/09 , G02B7/182 , G01S17/89 , G02B27/09 , G02B27/10 , G02B27/30 , H01L25/16 , G01S17/87 , G02B5/08 , G02B5/18 , G02B5/22
摘要: A lidar system comprises a light source configured to emit light, a scanner configured to direct the emitted light to scan a field of regard of the lidar system in accordance with a scan pattern, a receiver configured to detect the light scattered by one or more remote targets, and a controller configured to control motion of at least the second mirror to modify the scan pattern. The scanner includes a rotatable polygon mirror having a block having a first wall, a second wall, and reflective surfaces extending between the first and second walls, the reflective surfaces being angularly offset from one another along a periphery of the block. The scanner also includes a polygon mirror axle extending into the block through at least one of the first and second walls, about which the block rotates, and a second mirror pivotable along an axis orthogonal to the polygon mirror axle.
-
公开(公告)号:US10545240B2
公开(公告)日:2020-01-28
申请号:US15917628
申请日:2018-03-10
摘要: A lidar system includes a transmitter that encodes successive transmit pulses with different pulse characteristics and a receiver that detects the pulse characteristics of each received (scattered or reflected) pulse and that distinguishes between the received pulses based on the detected pulse characteristics. The lidar system thus resolves range ambiguities by encoding pulses of scan positions in the same or different scan periods to have different pulse characteristics, such as different pulse widths or different pulse envelope shapes. The receiver includes a pulse decoder configured to detect the relevant pulse characteristics of the received pulse and a resolver that determines if the pulse characteristics of the received pulse matches the pulse characteristics of the current scan position or that of a previous scan position.
-
-
-
-
-
-
-
-
-