Abstract:
Methods for physical layer multi-point carrier aggregation and feedback configuration are disclosed. In one embodiment of the invention, a UE receives an upper layer configuration includes a first UE-ID associated with a first group of component carriers (CCs) and a second UE-ID associated with a second group of CCs. The UE receives downlink control information via one or more downlink control channels on one or downlink CCs. The UE decodes the downlink control information using the first UE-ID and the second UE-ID. In another embodiment of the invention, the UE receives an upper layer configuration of a first uplink feedback CC associated with a first group of downlink CCs and a second uplink feedback CC associated with a second group of downlink CCs. The UE generates feedback information for the downlink CCs to be carried on their corresponding uplink feedback CC.
Abstract:
A method of failure event reporting for initial connection setup failure is proposed. In one embodiment, a UE first camps in RRC_IDLE mode in a cell served by a base station. The UE then detects a connection setup failure when performing a random access channel (RACH) procedure with the base station in an RRC connection attempt. The UE records a failure event report when the RACH procedure fails. Later, the UE transmits the failure event report to the network in RRC_CONNECTED mode. The failure event report comprises information that refers to the earlier RRC connection attempt. The failure event report also comprises available location information or available mobility measurements at the time the initial connection setup failure occurs. Based on the failure event report, the network can adopt corrective actions accordingly to mitigate the failure.
Abstract:
An enhanced connection recovery upon lost RRC connection due to radio link failure (RLF) or handover failure (HOF) is proposed. A UE first establishes an RRC connection in a source cell in a mobile communication network. Later on, the UE detects a failure event and starts an RRC reestablishment procedure in a target cell to restore the RRC connection. In a first novel aspect, a fast RLF process is applied to reduce the outage time in the serving cell. In a second novel aspect, an enhanced cell selection mechanism based on cell prioritization information is applied to reduce the outage time in the target cell. In one embodiment, multi-RAT registration is used to steer cell selection.
Abstract:
A method of network-based positioning using sounding reference signal (SRS) is proposed. An eNodeB configures a number of parameters of a periodic SRS transmission for a user equipment (UE). The eNodeB then transmits SRS configuration data for SRS measurements performed by a location measurement unit (LMU). The SRS configuration data includes cell-specific SRS bandwidth configuration and UE-specific SRS bandwidth configuration. The SRS configuration data may further include a number of antenna ports for SRS transmission, SRS frequency hopping bandwidth configuration, information on whether SRS sequence-group hopping is enabled, and ΔSS when SRS sequence hopping is enabled. Upon receiving the SRS configuration data, the LMU is able to perform timing measurements over the received SRS signals from the UE. In one embodiment, the LMU detects SRS dropping to avoid performance degradation of the network-based positioning.
Abstract:
An enhanced connection recovery upon lost RRC connection due to radio link failure (RLF) or handover failure (HOF) is proposed. A UE first establishes an RRC connection in a source cell in a mobile communication network. Later on, the UE detects a failure event and starts an RRC reestablishment procedure in a target cell to restore the RRC connection. In a first novel aspect, a fast RLF process is applied to reduce the outage time in the serving cell. In a second novel aspect, an enhanced cell selection mechanism based on cell prioritization information is applied to reduce the outage time in the target cell. In one embodiment, multi-RAT registration is used to steer cell selection.
Abstract:
A method of power management for a mobile station in a multi-carrier wireless network is provided. A primary connection between the mobile station and a serving base station is first established by performing initial ranging over a primary radio frequency (RF) carrier. A secondary connection between the mobile station and the base station is then established by performing periodic ranging over a secondary RF carrier. To achieve efficient power management, the mobile station performs Open Loop Power Control and obtains long-term link measurement (CSI) of the primary carrier. The mobile station then adjusts carrier-specific parameters based on the primary carrier CSI. For RF carriers that convey on-going data traffic, Close Loop Power Control is updated per RF carrier. When the mobile station enters sleep mode operation, it receives traffic indication messages on the primary RF carrier and then dynamically wakes up one or more corresponding RF carriers for data reception.
Abstract:
Apparatus and methods are provided for RRM measurement in the NR network. In one novel aspect, the RRM measurement is configured with one measurement gap for SS block and CSI-RS. In one embodiment, an extended MGL (eMGL) is configured such that the SS block and CSI-RS is measurement within one measurement gap. In another embodiment, the shorter MGL (sMGL) that is shorter than the standard MGL is configured. In another novel aspect, the CSI-RS is allocated adjacent to the SS blocks such that one measurement gap is configured for both the SS block and CSI-RS measurement. In another novel aspect, the CSI-RS measurement is conditionally configured. In yet another novel aspect, the UE decodes the time index of the SS block conditionally.
Abstract:
Apparatus and methods are provided for RRM measurement in the NR network. In one novel aspect, the RRM measurement is configured with one measurement gap for SS block and CSI-RS. In one embodiment, an extended MGL (eMGL) is configured such that the SS block and CSI-RS is measurement within one measurement gap. In another embodiment, the shorter MGL (sMGL) that is shorter than the standard MGL is configured. In another novel aspect, the CSI-RS is allocated adjacent to the SS blocks such that one measurement gap is configured for both the SS block and CSI-RS measurement. In another novel aspect, the CSI-RS measurement is conditionally configured. In yet another novel aspect, the UE decodes the time index of the SS block conditionally.
Abstract:
A User Equipment (UE) including a wireless transceiver and a controller is provided. The wireless transceiver performs wireless transmission and reception to and from a service network. The controller receives a measurement configuration and a Discontinuous Reception (DRX) configuration from the service network via the wireless transceiver, extends a measurement period indicated by the measurement configuration, and performs a cell measurement via the wireless transceiver in the extended measurement period.
Abstract:
A first network node receives downlink signaling from a second network node in a first occasion, received on a first carrier in a first time slot, and a second occasion, which is received either on the first carrier in a second time slot after the first time slot or on a second carrier in the first time slot or the second time slot. A MAC control element (CE) in the downlink signaling received in the first and second occasions contain a first timing padding value and a second timing padding value, respectively. A predetermined time slot is equally indicated by the first time slot plus the first timing padding value as well as by the second time slot plus the second timing padding value. The first network node effects one or more configurations in the predetermined time slot responsive to receiving the downlink signaling in the first and second occasions.