Abstract:
This invention provides transgenic plant cells with recombinant DNA for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced trait.
Abstract:
The present invention is in the field of plant breeding and disease resistance. More specifically, the invention includes a method for breeding corn plants containing one or more markers that are associated with resistance to fungi. The invention further includes germplasm and the use of germplasm containing at least one marker associated with resistance to Fusarium stalk rot (FSR) infection for introgression into elite germplasm in a breeding program, thus producing novel FSR resistant germplasm.
Abstract:
This disclosure provides recombinant DNA constructs and transgenic plants having enhanced traits such as increased yield, increased nitrogen use efficiency and enhanced drought tolerance; propagules, progeny and field crops of such transgenic plants; and methods of making and using such transgenic plants. This disclosure also provides methods of producing seed from such transgenic plants, growing such seed and selecting progeny plants with enhanced traits. Also disclosed are transgenic plants with altered phenotypes which are useful for screening and selecting transgenic events for the desired enhanced trait.
Abstract:
The present invention relates to the field of plant breeding. More specifically, the present invention includes a method of using haploid plants for genetic mapping of traits of interest such as disease resistance. Further, the invention includes a method for breeding corn plants containing quantitative trait loci (QTL) that are associated with resistance to Goss' Wilt, a bacterial disease associated with Clavibacter michiganense spp.
Abstract:
The present invention provides methods and compositions for identifying soybean plants that are tolerant or have improved tolerance, or those that are susceptible to, iron deficient growth conditions. The methods use molecular markers to identify, select, and/or introgress genetic loci modulating phenotypic expression of an iron deficiency tolerance trait in soybean plant breeding. Methods are provided for screening germplasm entries for the performance and expression of this trait.
Abstract:
The present invention is in the field of plant breeding and drought tolerance. More specifically, the invention includes a method for breeding corn plants containing one or more markers that are associated with tolerance to low water conditions. The invention further includes germplasm and the use of germplasm containing at least one marker associated with drought tolerance for introgression into elite germplasm in a breeding program, thus producing drought resistant germplasm. Other embodiments of this invention include transgenic drought tolerant corn plants and corn plant cells, and methods of detecting drought tolerance genes and chromosome regions associated with drought tolerance in a plant genome.
Abstract:
The present invention relates to the field of plant breeding. More specifically, the present invention includes a method of using haploid plants for genetic mapping of traits of interest such as disease resistance. Further, the invention includes a method for breeding corn plants containing quantitative trait loci (QTL) that are associated with resistance to Goss' Wilt, a bacterial disease associated with Clavibacter michiganense spp.