Abstract:
A method includes receiving, with a computing device, an image, identifying one or more salient features in the image, and generating a saliency map of the image including the one or more salient features. The method further includes sampling the image based on the saliency map such that the one or more salient features are sampled at a first density of sampling and at least one portion of the image other than the one or more salient features are sampled at a second density of sampling, where the first density of sampling is greater than the second density of sampling, and storing the sampled image in a non-transitory computer readable memory.
Abstract:
A closed-loop adaptive material deposition apparatus and method uses a scanning system to monitor an additively manufactured object as it is being fabricated and adapting the geometric shape and material composition of the subsequent layers based on the scan data. The scanning system repeatedly captures geometric and/or material information of a partially manufactured object with optional auxiliary objects inserted during the manufacturing process. Based on this information, the actual surface geometry and/or actual material composition is computed. Surface geometry may be offset and used as a slicing surface for the next portion of the digital model. The shape of the slicing surface may then be recomputed each time the system scans the partially fabricated object.
Abstract:
The present application relates generally to systems and methods for using machine vision to provide information on one or more aspects of an additive fabrication device, such as calibration parameters and/or an object formed by the device or in the process of being formed by the device. According to some aspects, a method is provided for calibrating an additive fabrication device. According to some aspects, a method is provided for assessing at least a portion of an object formed using an additive fabrication device. According to some aspects, a method is provided for fabricating a second object in contact with a first object using an additive fabrication device. According to some aspects, an additive fabrication device configured to perform one or more of the above methods may be provided.
Abstract:
According to some aspects, a method of designing an object based on a three-dimensional model representing a shape of the object is provided. The object may be fabricated from a plurality of materials having one or more known physical properties, wherein the object is designed to exhibit one or more target properties. The method may comprise determining a first composition of the object by providing the three-dimensional model as input to a reducer tree, determining one or more physical properties of the object with the first composition by simulating the object with the first composition, comparing the determined one or more physical properties with the one or more target properties, and determining a second composition of the object based on a result of comparing the determined one or more physical properties with the one or more target properties.
Abstract:
The present application relates generally to systems and methods for using machine vision to provide information on one or more aspects of an additive fabrication device, such as calibration parameters and/or an object formed by the device or in the process of being formed by the device. According to some aspects, a method is provided for calibrating an additive fabrication device. According to some aspects, a method is provided for assessing at least a portion of an object formed using an additive fabrication device. According to some aspects, a method is provided for fabricating a second object in contact with a first object using an additive fabrication device. According to some aspects, an additive fabrication device configured to perform one or more of the above methods may be provided.
Abstract:
Automultiscopic displays enable glasses-free 3D viewing by providing both binocular and motion parallax. Within the display field of view, different images are observed depending on the viewing direction. When moving outside the field of view, the observed images may repeat. Light fields produced by lenticular and parallax-barrier automultiscopic displays may have repetitive structure with significant discontinuities between the fields of view. This repetitive structure induces visual artifacts in the form of view discontinuities, depth reversals, and extensive disparities. To overcome this problem, a method modifies the presented light field image content and makes it more repetitive. In the method, a light field is refined using global and local shearing and then the repeating fragments are stitched. The method reduces the discontinuities in the displayed light field and leads to visual quality improvements. Benefits of the method are shown using an automultiscopic display with a parallax barrier and lenticular prints.
Abstract:
A programmable pipeline for synthesis of multi-material 3D printed objects supports procedural evaluation of geometric detail and material composition, using program modules allowing models to be specified easily and efficiently. A streaming architecture enables only a small fraction of the final volume to be stored in memory. Output is fed to the printer with little startup delay. A variety of multi-material objects are described. Procedural control over surface and volume stages as well as dithering is provided, together or independent of each other.