摘要:
The present invention is directed to systems, methods and apparatus for removing implanted objects from a patient's body, particularly implanted endocardial or epicardial pacemaker leads and transvenous defibrillation leads from a patient's heart. In one aspect of the invention, an electrosurgical catheter is advanced to a position within the thoracic cavity adjacent a portion of a pacemaker lead that is affixed to heart tissue. Preferably, the catheter is advanced over the pacemaker lead, i.e., using the pacemaker lead as a guidewire, to facilitate this positioning step. Once the distal end of the catheter reaches a blockage, or a portion of the lead that is attached to fibrous scar tissue, a high frequency voltage difference is applied between one or more electrode terminal(s) at the distal end of the catheter and one or more return electrode(s) to remove the scar tissue around the lead. The catheter is then advanced further along the lead until it reaches another blockage caused by fibrous scar tissue, and the process is continued until the catheter reaches the distal tip of the lead in the myocardium. At this point, the distal tip may be severed from the rest of the lead, or pulled out of the myocardial tissue in a conventional manner. The scar tissue around the pacemaker lead is precisely ablated before removing the lead, which minimizes or eliminates the risks associated with mechanical traction and countertraction, such as disruption of the heart wall, lead breakage with subsequent migration and the like.
摘要:
The present invention is directed to systems, methods and apparatus for removing implanted objects from a patient's body, particularly implanted endocardial or epicardial pacemaker leads and transvenous defibrillation leads from a patient's heart. In one aspect of the invention, an electrosurgical catheter is advanced to a position within the thoracic cavity adjacent a portion of a pacemaker lead that is affixed to heart tissue. Preferably, the catheter is advanced over the pacemaker lead, i.e., using the pacemaker lead as a guidewire, to facilitate this positioning step. Once the distal end of the catheter reaches a blockage, or a portion of the lead that is attached to fibrous scar tissue, a high frequency voltage difference is applied between one or more electrode terminal(s) at the distal end of the catheter and one or more return electrode(s) to remove the scar tissue around the lead. The catheter is then advanced further along the lead until it reaches another blockage caused by fibrous scar tissue, and the process is continued until the catheter reaches the distal tip of the lead in the myocardium. At this point, the distal tip may be severed from the rest of the lead, or pulled out of the myocardial tissue in a conventional manner. The scar tissue around the pacemaker lead is precisely ablated before removing the lead, which minimizes or eliminates the risks associated with mechanical traction and countertraction, such as disruption of the heart wall, lead breakage with subsequent migration and the like.
摘要:
The present invention comprises apparatus and methods for maintaining patency in body passages subject to occlusion by invasive tissue growth. The apparatus and methods of the present invention may be used to open and maintain patency in virtually any hollow body passage which may be subject to occlusion by invasive cellular growth or invasive solid tumor growth. Suitable hollow body passages include ducts, orifices, lumens, and the like, with exemplary body passages including the coronary arteries. The present invention is particularly useful for reducing or eliminating the effects of restenosis in coronary arteries by selectively removing tissue ingrowth in or around stents anchored therein.
摘要:
An electrosurgical probe comprises a shaft having an electrode array (12) at its distal end and a connector at its proximal end. The array (12) includes a plurality of isolated electrode terminals, and an electrosurgical power supply (28) is provided with a multiplicity of independently limited or controlled current sources and a connector. The electrosurgical probe and the power supply may be connected through their respective connectors so that the independent current sources are connected to individual electrode terminals. By applying very high frequency electrical energy to the electrode array, target tissue may be cut or ablated while heat dissipation through low impedance paths, such as blood and normal saline, will be minimized.
摘要:
An electrosurgical probe comprises a shaft having at least one electrode terminal at its distal end and a connector at its proximal end. The electrode terminal may be spaced from a return electrode such that when the electrode terminal is brought adjacent a tissue structure immersed in an electrically conductive fluid from outside the body, the electrically conductive fluid completes a conduction path between the electrode terminal and the return electrode. By applying high frequency electrical energy to the electrode terminal, target tissue may be cut or ablated while heat dissipation through low impedance paths, such as blood and normal saline, will be minimized. Related methods are disclosed.
摘要:
An electrosurgical probe (10) comprises a shaft (13) having an electrode array (58) at its distal end and a connector (19) at its proximal end for coupling the electrode array to a high frequency power supply (28). The shaft includes a return electrode (56) recessed from its distal end and enclosed within an insulating jacket (18). The return electrode defines an inner passage (83) electrically connected to both the return electrode and the electrode array for passage of an electrically conducting liquid (50). By applying high frequency voltage to the electrode array and the return electrode, the electrically conducting liquid generates a current flow path between the return electrode and the electrode array so that target tissue may be cut or ablated. The probe is particularly useful in dry environments, such as the mouth or abdominal cavity, because the electrically conducting liquid provides the necessary return current path between the active and return electrodes.
摘要:
The present invention provides systems and methods for selectively applying electrical energy to a target location within the gastrointestinal tract, such as the lower esophageal sphincter (LES). In one aspect of the invention, high frequency voltage is applied between the electrode terminal(s) and one or more return electrode(s) to remove a small tissue segment, channel or hole from the region near or in the LES to shrink the turbinates and prevent swelling, due to the formation of scar tissue as the wound heals. The high frequency voltage may be selected to effect a small amount of thermal damage to the walls of the channel or hole to facilitate the formation of scar tissue without extending this thermal damage beyond the immediate region of the target site. In another aspect, the high frequency voltage is selected to contract collagen fibers within the LES to improve its tone, thereby reducing the frequency of reflux.
摘要:
The present invention provides systems and methods for selectively applying electrical energy to a target location within or on a patient's body. In particular, methods and apparatus are provided for resecting, cutting, partially ablating, aspirating or otherwise removing tissue from a target site, and ablating the tissue in situ. The methods and systems of the present invention are particularly useful for removing tissue within joints, e.g., synovial tissue, meniscus, articular cartilage and the like.
摘要:
Systems and methods are provided for selectively applying electrical energy to a target location on an external body surface, such as skin tissue removal and/or collagen shrinkage in the epidermis or dermis, e.g., the removal of pigmentations, vascular lesions (e.g., leg veins), scars, tattoos, etc., and for other surgical procedures on the skin, such as tissue rejuvenation, cosmetic surgery, wrinkle removal, hair removal and/or transplant procedures. The present invention applies high frequency (RF) electrical energy to one or more electrode terminals adjacent an external body surface, such as the outer surface of the skin, to remove and/or modify the structure of tissue structures within the skin. Depending on the specific cosmetic procedure, the present invention may be used to: (1) volumetrically remove tissue or hair (i.e., ablate or effect molecular dissociation of the tissue structure); (2) separate a tissue layer from an underlying tissue layer so that the tissue layer can be removed; (3) shrink or contract collagen connective tissue; and/or (4) coagulate blood vessels underlying the surface of the skin.
摘要:
The present invention provides systems and methods for selectively applying electrical energy to a target location within or on a patient's body. In particular, methods and apparatus are provided for resecting, cutting, partially ablating, aspirating or otherwise removing tissue from a target site, and ablating the tissue in situ. The methods and systems of the present invention are particularly useful for removing tissue within joints, e.g., synovial tissue, meniscus, articular cartilage and the like.