Abstract:
A method of forming an integrated DMOS transistor/EEPROM cell includes forming a first mask over a substrate, forming a drift implant in the substrate using the first mask to align the drift implant, simultaneously forming a first floating gate over the drift implant, and a second floating gate spaced apart from the drift implant, forming a second mask covering the second floating gate and covering a portion of the first floating gate, forming a base implant in the substrate using an edge of the first floating gate to self-align the base implant region, and simultaneously forming a first control gate over the first floating gate and a second control gate over the second floating gate. The first floating gate, first control gate, drift implant, and base implant form components of the DMOS transistor, and the second floating gate and second control gate form components of the EEPROM cell.
Abstract:
A method of forming an integrated DMOS transistor/EEPROM cell includes forming a first mask over a substrate, forming a drift implant in the substrate using the first mask to align the drift implant, simultaneously forming a first floating gate over the drift implant, and a second floating gate spaced apart from the drift implant, forming a second mask covering the second floating gate and covering a portion of the first floating gate, forming a base implant in the substrate using an edge of the first floating gate to self-align the base implant region, and simultaneously forming a first control gate over the first floating gate and a second control gate over the second floating gate. The first floating gate, first control gate, drift implant, and base implant form components of the DMOS transistor, and the second floating gate and second control gate form components of the EEPROM cell.
Abstract:
A sidewall-type memory cell (e.g., a CBRAM, ReRAM, or PCM cell) may include a bottom electrode, a top electrode layer defining a sidewall, and an electrolyte layer arranged between the bottom and top electrode layers, such that a conductive path is defined between the bottom electrode and a the top electrode sidewall via the electrolyte layer, wherein the bottom electrode layer extends generally horizontally with respect to a horizontal substrate, and the top electrode sidewall extends non-horizontally with respect to the horizontal substrate, such that when a positive bias-voltage is applied to the cell, a conductive path grows in a non-vertical direction (e.g., a generally horizontal direction or other non-vertical direction) between the bottom electrode and the top electrode sidewall.