Abstract:
A system for mitigating impairment in a communication system includes a delay block, a signal level block, a moving average window block, an impulse noise detection block, and a combiner. The delay block receives and delays each chip of a plurality of chips in a spreading interval. The signal level block determines a signal level of each chip of the plurality of chips in the spreading interval. The moving average window block determines a composite signal level for a chip window corresponding to the chip. The impulse noise detection block receives the signal level, receives the composite signal level, and produces an erasure indication for each chip of the plurality of chips of the corresponding chip window. The combiner erases chips of the plurality of chips of the spreading interval based upon the erasure indication.
Abstract:
A system for mitigating impairment in a communication system includes a delay block, a signal level block, a moving average window block, an impulse noise detection block, and a combiner. The delay block receives and delays each chip of a plurality of chips in a spreading interval. The signal level block determines a signal level of each chip of the plurality of chips in the spreading interval. The moving average window block determines a composite signal level for a chip window corresponding to the chip. The impulse noise detection block receives the signal level, receives the composite signal level, and produces an erasure indication for each chip of the plurality of chips of the corresponding chip window. The combiner erases chips of the plurality of chips of the spreading interval based upon the erasure indication.
Abstract:
Cancellation of interference in a communication system with application to S-CDMA. A relatively straight-forward implemented and computationally efficient approach of selecting a predetermined number of unused codes is used to perform weighted linear combination selectively with each of the input spread signals in a multiple access communication system. If desired, the predetermined number of unused codes is always the same in each implementation. Alternatively, the predetermined number of unused codes is selected from within a reordered code matrix using knowledge that is shared between the two ends of a communication system, such as between the CMs and a CMTS. While the context of an S-CDMA communication system having CMs and a CMTS is used, the solution is generally applicable to any communication system that seeks to cancel narrowband interference. Several embodiments are also described that show the generic applicability of the solution across a wide variety of systems.
Abstract:
A communication system performs burst noise cancellation. A transmitter produces and transmits a spread signal that comprises at least one known-value symbol spread by a plurality of non data-carrying orthogonal codes and data symbols spread by at least one data-carrying orthogonal code. The transmitter transmits the spread signal across a communication link that introduces burst noise. A burst noise detector determines burst noise affected chips of the orthogonal codes. A weight computation functional block calculates a plurality of complex-valued combining weights based upon the burst noise affected chips. A vector de-spreader and a linear combiner operate in combination to use the plurality of non data-carrying orthogonal codes, the at least one data-carrying orthogonal code, and the plurality of complex-valued combining weights to de-spread the received spread signal to produce the data symbols with the burst noise substantially removed.
Abstract:
A system and method of transmitting video in a time division multiplexing (TDM) system, wherein the method comprises identifying a video reference frame from a series of video frames; encoding a difference between the video reference frame and a video non-reference frame; placing the video reference frame at a beginning of a data burst; transmitting the series of video frames and the data burst from a transmitter to a mobile TV receiver; and the mobile TV receiver immediately locating the video reference frame upon receipt of the data burst. The method may further comprise the mobile TV receiver decoding the series of video frames. Additionally, the placing process results in a substantially non-existent channel switching delay in the mobile TV receiver. Moreover, the method may further comprise placing exactly one video reference frame at the beginning of the data burst. Preferably, the TDM system comprises a mobile TV system.
Abstract:
Cancellation of interference in a communication system with application to S-CDMA. A relatively straight-forward implemented and computationally efficient approach of selecting a predetermined number of unused codes is used to perform weighted linear combination selectively with each of the input spread signals in a multiple access communication system. If desired, the predetermined number of unused codes is always the same in each implementation. Alternatively, the predetermined number of unused codes is selected from within a reordered code matrix using knowledge that is shared between the two ends of a communication system, such as between the CMs and a CMTS. While the context of an S-CDMA communication system having CMs and a CMTS is used, the solution is generally applicable to any communication system that seeks to cancel narrowband interference. Several embodiments are also described that show the generic applicability of the solution across a wide variety of systems.
Abstract:
Iterative data-aided carrier CFO estimation for CDMA systems. Any communication receiver may be adapted to perform the iterative data-aided carrier CFO estimation. The iterative data-aided carrier CFO estimation is performed using a high accuracy method. The operation may be described as follows: a received signal is despread and buffered. Using the received preamble sequence, an initial estimate of the CFO is obtained. This estimate is used to correct the whole despread data. The corrected data using the initial CFO estimate is sliced. Each despread data symbol is divided by the corresponding sliced data decision. The obtained sequence is then averaged across different codes to obtain a less noisy sequence, which is then used to estimate the CFO again. The procedure can be repeated (iterated) to obtain a more accurate carrier frequency offset estimate; the number of times in which the procedure is repeated may be programmable or predetermined.
Abstract:
A relatively straight-forward implemented, and computationally efficient approach of selecting a predetermined number of unused codes is used to perform weighted linear combination selectively with each of the input spread signals in a multiple access communication system. If desired, the predetermined number of unused codes is always the same in each implementation. Alternatively, the predetermined number of unused codes are selected from within a reordered code matrix using knowledge that is shared between the two ends of a communication system, such as between the CMs and a CMTS. While the context of an S-CDMA communication system having CMs and a CMTS is used, the solution is generally applicable to any communication system that seeks to cancel narrowband interference. Several embodiments are also described that show the generic applicability of the solution across a wide variety of systems.
Abstract:
A novel approach of repeated adaptation is provided that can be applied to either one or both of channel estimation and/or equalization. From an incoming data packet that includes data and a training sequence, a modified data packet is generated that includes the data, the training sequence, and at least one additional copy of the training sequence. From the format of this modified data packet, the same training sequence can be used over and over again a desired number of times to perform channel estimation and subsequent calculation of equalizer tap coefficients. Alternatively, the same training sequence can be used over and over again a desired number of times to converge the equalizer coefficient taps directly without doing any preliminary channel estimation. Generally, either of these approaches can be characterized as a cyclic adaptation operation that provides improved performance without incurring any reduction in throughput of the communication channel.
Abstract:
A method and apparatus that provides an accurate estimate of the time and amplitude of arrival of the first arriving overlapping multipath components (rays) in wireless locating finding systems. Overlapping fading multipath components for mobile-positioning are resolved by exploiting the fact that multipath components fade independently. Although fast channel fading is usually considered a challenge to the location finding process, it is used as an additional tool to detect and resolve overlapping multipath rays. A projection technique is also provided that exploits all possible a-priori channel information into a adaptive filtering algorithm, thus providing needed robustness to divergence of the adaptive algorithm that might result from possible severe data matrix ill-conditioning and high noise levels, which are common in wireless location applications.