System and method for spatially consistent sampling of flow records at constrained, content-dependent rates
    43.
    发明授权
    System and method for spatially consistent sampling of flow records at constrained, content-dependent rates 有权
    以受限制的,依赖内容的速率对流记录进行空间一致采样的系统和方法

    公开(公告)号:US08064359B2

    公开(公告)日:2011-11-22

    申请号:US12343007

    申请日:2008-12-23

    CPC classification number: H04L43/026 H04L43/024 Y02D50/30

    Abstract: Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a desired quantity of flow record to sample, receiving a plurality of network flow record each summarizing a network flow of packets, calculating a hash for each flow record of based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, generating a priority from the calculated hash for each respective flow record, and sampling exactly the desired quantity of flow records, selecting flow records having a highest priority first. In one aspect, the method further partitions the plurality of flow records into groups based on flow origin and destination, generates an individual priority for each partitioned group, and separately samples exactly the desired quantity of flow records from each partitioned group, selecting flows having a highest individual priority first.

    Abstract translation: 本文公开了系统,计算机实现的方法和用于对网络业务进行采样的计算机可读介质。 该方法包括接收所需数量的流记录到采样中,接收多个网络流记录,每个汇总分组的网络流,基于相应流的一个或多个不变部分计算每个流记录的散列, 从每个相应流记录的计算散列中产生准随机数,从每个相应流记录的计算散列生成优先级,并精确地采样所需数量的流记录,首先选择具有最高优先级的流记录。 在一个方面,该方法还基于流源和目的地进一步将多个流记录划分为组,为每个分区组生成一个单独的优先级,并且从每个分区组中分别精确地采集所需数量的流记录,选择具有 最高个人优先。

    Methods and apparatus to bound network traffic estimation error for multistage measurement sampling and aggregation
    44.
    发明授权
    Methods and apparatus to bound network traffic estimation error for multistage measurement sampling and aggregation 失效
    用于多级测量采样和聚合的网络流量估计误差的方法和装置

    公开(公告)号:US07990982B2

    公开(公告)日:2011-08-02

    申请号:US12335074

    申请日:2008-12-15

    CPC classification number: H04L43/16 H04L41/0681 H04L41/12 H04L43/02

    Abstract: Methods and apparatus to bound network traffic estimation error for multistage measurement sampling and aggregation are disclosed. An example method disclosed herein comprises determining a hierarchical sampling topology representative of multiple data sampling and aggregation stages, the hierarchical sampling topology comprising a plurality of nodes connected by a plurality of edges, each node corresponding to at least one of a data source and a data aggregation operation, and each edge corresponding to a data sampling operation characterized by a generalized sampling threshold, selecting a first generalized sampling threshold from a set of generalized sampling thresholds associated with a respective set of edges originating at a respective set of descendent nodes of a target node undergoing network traffic estimation, and transforming a measured sample of network traffic into a confidence interval for a network traffic estimate associated with the target node using the first generalized sampling threshold and an error parameter.

    Abstract translation: 公开了多级测量采样和聚合的绑定网络流量估计误差的方法和装置。 本文公开的示例性方法包括确定表示多个数据采样和聚合阶段的分层采样拓扑,所述分层采样拓扑包括由多个边缘连接的多个节点,每个节点对应于数据源和数据中的至少一个 并且每个边缘对应于由广义采样阈值表征的数据采样操作,从与源于目标的相应的一组后代节点的相应的一组边缘相关联的一组广义采样阈值中选择第一广义采样阈值 节点进行网络流量估计,并且使用第一广义采样阈值和误差参数将网络流量的测量样本变换为与目标节点相关联的网络流量估计的置信区间。

    Method and apparatus for one-way passive loss measurements using sampled flow statistics
    45.
    发明授权
    Method and apparatus for one-way passive loss measurements using sampled flow statistics 有权
    使用采样流统计的单向无源损耗测量的方法和装置

    公开(公告)号:US07924739B2

    公开(公告)日:2011-04-12

    申请号:US12317420

    申请日:2008-12-22

    Abstract: A packet loss estimation technique is disclosed that utilizes the sampled flow level statistics that are routinely collected in operational networks, thereby obviating the need for any new router features or measurement infrastructure. The technique is specifically designed to handle the challenges of sampled flow-level aggregation such as information loss resulting from packet sampling, and generally comprises: receiving a first record of sampled packets for a flow from a first network element; receiving a second record of sampled packets for the flow from a second network element communicating with the first network element; correlating sampled packets from the flow at the first network element and the second network element to a measurement interval; and estimating the packet loss using a count of the sampled packets correlated to the measurement interval.

    Abstract translation: 公开了一种利用在操作网络中常规收集的采样流量统计信息的分组丢失估计技术,从而避免了对任何新的路由器特征或测量基础设施的需要。 该技术专门设计用于处理采样流级聚合的挑战,例如由分组采样导致的信息丢失,并且通常包括:从第一网络元件接收流的第一采样分组记录; 从与第一网络元件通信的第二网络元件接收用于流的采样分组的第二记录; 将来自第一网元和第二网元的流的采样分组相关联到测量间隔; 以及使用与测量间隔相关联的采样分组的计数来估计分组丢失。

    SYSTEM AND METHOD FOR SAMPLING NETWORK TRAFFIC
    47.
    发明申请
    SYSTEM AND METHOD FOR SAMPLING NETWORK TRAFFIC 有权
    用于采集网络交通的系统和方法

    公开(公告)号:US20100161791A1

    公开(公告)日:2010-06-24

    申请号:US12342957

    申请日:2008-12-23

    CPC classification number: H04L43/04 H04L43/022 H04L43/026 H04L43/062

    Abstract: Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a plurality of flow records, calculating a hash for each flow record based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, and sampling flow records having a quasi-random number below a probability P. Invariant parts of flow records include destination IP address, source IP address, TCP/UDP port numbers, TCP flags, and network protocol. A plurality of routers can uniformly calculate hashes for flow records. Each router in a plurality of routers can generate a same quasi-random number for each respective flow record and uses different values for probability P. The probability P can depend on a flow size. The method can divide the quasi-random number by a maximum possible hash value.

    Abstract translation: 本文公开了系统,计算机实现的方法和用于对网络业务进行采样的计算机可读介质。 该方法包括:接收多个流记录,基于相应流的一个或多个不变部分计算每个流记录的散列,从针对每个相应流记录的计算出的散列生成准随机数,以及对具有 低于概率P的准随机数。流记录的不变部分包括目的地IP地址,源IP地址,TCP / UDP端口号,TCP标志和网络协议。 多个路由器可以统一计算流记录的哈希值。 多个路由器中的每个路由器可以为每个相应的流记录生成相同的准随机数,并对概率P使用不同的值。概率P可以取决于流量大小。 该方法可以将准随机数除以最大可能的哈希值。

    Algorithms and Estimators for Summarization of Unaggregated Data Streams
    48.
    发明申请
    Algorithms and Estimators for Summarization of Unaggregated Data Streams 失效
    用于汇总未分类数据流的算法和估计器

    公开(公告)号:US20090303901A1

    公开(公告)日:2009-12-10

    申请号:US12136725

    申请日:2008-06-10

    CPC classification number: H04L43/024

    Abstract: The invention relates to streaming algorithms useful for obtaining summaries over unaggregated packet streams and for providing unbiased estimators for characteristics, such as, the amount of traffic that belongs to a specified subpopulation of flows. Packets are sampled from a packet stream and aggregated into flows and counted by implementation of Adaptive Sample-and-Hold (ASH) or Adaptive NetFlow (ANF), adjusting the sampling rate based on a quantity of flows to obtain a sketch having a predetermined size, the sampling rate being adjusted in steps; and transferring the count of aggregated packets from SRAM to DRAM and initializing the count in SRAM following adjustment of the sampling rate.

    Abstract translation: 本发明涉及用于在未分组的分组流上获得摘要的用于提供用于特征的无偏估计器的流式传输算法,例如属于指定的流量子群的业务量。 分组从分组流中采样并聚合成流,并通过实施自适应采样保持(ASH)或自适应净流(ANF)进行计数,根据流量调整采样率,以获得具有预定尺寸的草图 采样率逐步调整; 并将汇总数据包从SRAM传输到DRAM,并在采样率调整后初始化SRAM中的计数。

    Algorithms and Estimators for Summarization of Unaggregated Data Streams
    49.
    发明申请
    Algorithms and Estimators for Summarization of Unaggregated Data Streams 失效
    用于汇总未分类数据流的算法和估计器

    公开(公告)号:US20090303879A1

    公开(公告)日:2009-12-10

    申请号:US12136705

    申请日:2008-06-10

    Abstract: The invention relates to streaming algorithms useful for obtaining summaries over unaggregated packet streams and for providing unbiased estimators for characteristics, such as, the amount of traffic that belongs to a specified subpopulation of flows. Packets are sampled from a packet stream and aggregated into flows and counted by implementation of: (a) Adaptive Sampled NetFlow (ANF), and adjusted weight (AANF) of a flow (f) is calculated as follows: AANF(f)=i(f)/p′; i(f) being the number of packets counted for a flow f, and p′ being the sampling rate at end of a measurement period; or (b) Adaptive Sample-and-Hold (ASH), and adjusted weight (AASH) of a flow (f) is calculated as follows: AASH(f)=i(f)+(1−p′)/p′; i(f) being the number of packets counted for a flow f, and p′ being the sampling rate at end of a measurement period.

    Abstract translation: 本发明涉及用于在未分组的分组流上获得摘要的用于提供用于特征的无偏估计器的流式传输算法,例如属于指定的流量子群的业务量。 分组从分组流中采样并聚合成流,并通过实现计算:(a)自适应采样NetFlow(ANF)和流(f)的调整权重(AANF)计算如下:AANF(f)= i (f)/ p'; i(f)是流f计数的分组数,p'是测量周期结束时的采样率; 或(b)自适应采样保持(ASH)和流(f)的调整权重(AASH)如下计算:AASH(f)= i(f)+(1-p')/ p' ; i(f)是流f计数的分组数,p'是测量周期结束时的采样率。

    Adaptive defense against various network attacks
    50.
    发明授权
    Adaptive defense against various network attacks 有权
    针对各种网络攻击的自适应防御

    公开(公告)号:US07587761B2

    公开(公告)日:2009-09-08

    申请号:US11216972

    申请日:2005-08-31

    CPC classification number: H04L63/1408 H04L63/1441 H04L2463/141

    Abstract: An apparatus for optimizing a filter based on detected attacks on a data network includes an estimation means and an optimization means. The estimation means operates when a detector detects an attack and the detector transmits an inaccurate attack severity. The estimation means determines an accurate attack severity. The optimization means adjusts a parameter and the parameter is an input to a filter.

    Abstract translation: 基于检测到的对数据网络的攻击来优化过滤器的装置包括估计装置和优化装置。 当检测器检测到攻击并且检测器发送不准确的攻击严重性时,估计装置进行操作。 估计装置确定准确的攻击严重性。 优化方法调整参数,参数是过滤器的输入。

Patent Agency Ranking