Abstract:
A method and apparatus for detecting and localizing an anomaly for a network are disclosed. For example, the method sends a first set of probe packets on at least one path of the network, and detects a performance anomaly on a first path of the at least one path. The method then identifies at least one link on the first path that is responsible for the performance anomaly by applying a second set of probe packets.
Abstract:
A system to detect anomalies in internet protocol (IP) flows uses a set of machine-learning (ML) rules that can be applied in real time at the IP flow level. A communication network has a large number of routers that can be equipped with flow monitoring capability. A flow collector collects flow data from the routers throughout the communication network and provides them to a flow classifier. At the same time, a limited number of locations in the network monitor data packets and generate alerts based on packet data properties. The packet alerts and the flow data are provided to a machine learning system that detects correlations between the packet-based alerts and the flow data to thereby generate a series of flow-level alerts. These rules are provided to the flow time classifier. Over time, the new packet alerts and flow data are used to provide updated rules generated by the machine learning system.
Abstract:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a desired quantity of flow record to sample, receiving a plurality of network flow record each summarizing a network flow of packets, calculating a hash for each flow record of based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, generating a priority from the calculated hash for each respective flow record, and sampling exactly the desired quantity of flow records, selecting flow records having a highest priority first. In one aspect, the method further partitions the plurality of flow records into groups based on flow origin and destination, generates an individual priority for each partitioned group, and separately samples exactly the desired quantity of flow records from each partitioned group, selecting flows having a highest individual priority first.
Abstract:
Methods and apparatus to bound network traffic estimation error for multistage measurement sampling and aggregation are disclosed. An example method disclosed herein comprises determining a hierarchical sampling topology representative of multiple data sampling and aggregation stages, the hierarchical sampling topology comprising a plurality of nodes connected by a plurality of edges, each node corresponding to at least one of a data source and a data aggregation operation, and each edge corresponding to a data sampling operation characterized by a generalized sampling threshold, selecting a first generalized sampling threshold from a set of generalized sampling thresholds associated with a respective set of edges originating at a respective set of descendent nodes of a target node undergoing network traffic estimation, and transforming a measured sample of network traffic into a confidence interval for a network traffic estimate associated with the target node using the first generalized sampling threshold and an error parameter.
Abstract:
A packet loss estimation technique is disclosed that utilizes the sampled flow level statistics that are routinely collected in operational networks, thereby obviating the need for any new router features or measurement infrastructure. The technique is specifically designed to handle the challenges of sampled flow-level aggregation such as information loss resulting from packet sampling, and generally comprises: receiving a first record of sampled packets for a flow from a first network element; receiving a second record of sampled packets for the flow from a second network element communicating with the first network element; correlating sampled packets from the flow at the first network element and the second network element to a measurement interval; and estimating the packet loss using a count of the sampled packets correlated to the measurement interval.
Abstract:
An efficient streaming method and apparatus for detecting hierarchical heavy hitters from massive data streams is disclosed. In one embodiment, the method enables near real time detection of anomaly behavior in networks.
Abstract:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a plurality of flow records, calculating a hash for each flow record based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, and sampling flow records having a quasi-random number below a probability P. Invariant parts of flow records include destination IP address, source IP address, TCP/UDP port numbers, TCP flags, and network protocol. A plurality of routers can uniformly calculate hashes for flow records. Each router in a plurality of routers can generate a same quasi-random number for each respective flow record and uses different values for probability P. The probability P can depend on a flow size. The method can divide the quasi-random number by a maximum possible hash value.
Abstract:
The invention relates to streaming algorithms useful for obtaining summaries over unaggregated packet streams and for providing unbiased estimators for characteristics, such as, the amount of traffic that belongs to a specified subpopulation of flows. Packets are sampled from a packet stream and aggregated into flows and counted by implementation of Adaptive Sample-and-Hold (ASH) or Adaptive NetFlow (ANF), adjusting the sampling rate based on a quantity of flows to obtain a sketch having a predetermined size, the sampling rate being adjusted in steps; and transferring the count of aggregated packets from SRAM to DRAM and initializing the count in SRAM following adjustment of the sampling rate.
Abstract:
The invention relates to streaming algorithms useful for obtaining summaries over unaggregated packet streams and for providing unbiased estimators for characteristics, such as, the amount of traffic that belongs to a specified subpopulation of flows. Packets are sampled from a packet stream and aggregated into flows and counted by implementation of: (a) Adaptive Sampled NetFlow (ANF), and adjusted weight (AANF) of a flow (f) is calculated as follows: AANF(f)=i(f)/p′; i(f) being the number of packets counted for a flow f, and p′ being the sampling rate at end of a measurement period; or (b) Adaptive Sample-and-Hold (ASH), and adjusted weight (AASH) of a flow (f) is calculated as follows: AASH(f)=i(f)+(1−p′)/p′; i(f) being the number of packets counted for a flow f, and p′ being the sampling rate at end of a measurement period.
Abstract translation:本发明涉及用于在未分组的分组流上获得摘要的用于提供用于特征的无偏估计器的流式传输算法,例如属于指定的流量子群的业务量。 分组从分组流中采样并聚合成流,并通过实现计算:(a)自适应采样NetFlow(ANF)和流(f)的调整权重(AANF)计算如下:AANF(f)= i (f)/ p'; i(f)是流f计数的分组数,p'是测量周期结束时的采样率; 或(b)自适应采样保持(ASH)和流(f)的调整权重(AASH)如下计算:AASH(f)= i(f)+(1-p')/ p' ; i(f)是流f计数的分组数,p'是测量周期结束时的采样率。
Abstract:
An apparatus for optimizing a filter based on detected attacks on a data network includes an estimation means and an optimization means. The estimation means operates when a detector detects an attack and the detector transmits an inaccurate attack severity. The estimation means determines an accurate attack severity. The optimization means adjusts a parameter and the parameter is an input to a filter.